基于多尺度Chirplet稀疏分解和Wigner-Ville變換的時頻分析方法
doi: 10.11999/JEIT160750
國家自然科學基金(61671095, 61371164, 61275099),信號與信息處理重慶市市級重點實驗室建設(shè)項目(CSTC2009 CA2003),重慶市教育委員會科研項目(KJ130524, KJ1600427, KJ1600429)
Time-frequency Analysis Method Based on Multi-scale Chirplet Sparse Decomposition and Wigner-Ville Transform
The National Natural Science Foundation of China (61671095, 61371164, 61275099), The Project of Key Laboratory of Signal and Information Processing of Chongqing (CSTC2009CA2003), The Research Project of Chongqing Educational Commission (KJ130524, KJ1600427, KJ1600429)
-
摘要: 針對多分量多項式相位信號(mc-PPS)的Wigner-Ville分布存在的時頻干擾問題,該文提出一種基于多尺度Chirplet稀疏分解和Wigner-Ville變換的時頻分析方法。該方法采用多尺度的Chirplet基函數(shù)對信號進行投影分解,通過延時相關(guān)解調(diào)的分數(shù)階傅里葉變換(FRFT)搜索投影系數(shù)最大的基函數(shù),將搜索得到的基函數(shù)通過Wigner-Ville變換和最佳路徑連接方法,逐次獲得使分解信號能量最大的信號分量及其時頻分布。仿真結(jié)果表明,該方法能在低信噪比條件下有效抑制等振幅mc-PPS的自交叉項和互交叉項的干擾,具有最佳的時頻聚集性,克服了全局搜索基函數(shù)計算量大的問題,適用于非平穩(wěn)信號的分析和處理。
-
關(guān)鍵詞:
- 多尺度Chirplet /
- Wigner-Ville變換 /
- 分數(shù)階傅里葉變換 /
- 時頻干擾 /
- 信噪比
Abstract: To solve the problem of time-frequency interference existing in the multicomponent Polynomial Phase Signal (mc-PPS) Wigner-Ville distribution, a new time-frequency analysis method based on the multi-scale Chirplet sparse decomposition and Wigner-Ville transform is proposed. This method projects mc-PPS onto the multi-scale Chirplet base functions, searching best base functions by the improved FRactional Fourier Transform (FRFT). Through the Wigner-Ville transform and best path pursuit algorithm, the base functions constitute largest energy signals component and power distribution in turns. Simulation results verify that the proposed method can restrain effectively the cross-interference of constant mc-PPS in low Signal-to-Noise Ratio condition, maintain a high time-frequency aggregation, and overcome the large computation of global searching algorithm. Furthermore, this method is suitable for non-stationary signals analysis and processing. -
張賢達. 非平穩(wěn)信號分析與處理[M]. 北京: 國防工業(yè)出版社, 2001: 451-492. ZHANG Xianda. Nonstationary Signal Analysis and Processing[M]. Beijing: National Defence Industry Press, 2001: 451-492. 鄒紅星, 周小波, 李衍達. 時頻分析: 回溯與前瞻[J]. 電子學報, 2000, 28(8): 78-84. ZOU Hongxing, ZHOU Xiaobo, and LI Yanda. Which time- frequency analysisa survey[J]. Acta Electronica Sinica, 2000, 28(8): 78-84. KRISTIAN T and MARC M. Adaptive time-frequency analysis for noise reduction in an audio filter bank with low delay[J]. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2016, 24(4): 784-795. doi: 10.1109/ TASLP.2016.2526779. MISHRA A, SINGH A K, and SAHU S. ECG signal denoising using time-frequency based filtering approach[C]. Proceedings of the International Conference on Communication and Signal Processing, India, 2016: 0503-0507. doi: 10.1109/ICCSP.2016.7754188. WANG J and HE Q. Wavelet packet envelope manifold for fault diagnosis of rolling element bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(11): 2515-2526. doi: 10.1109/TIM.2016.2566838. 劉穎, 陳殿仁, 陳磊, 等. 基于周期Choi-Williams Hough變換的線性調(diào)頻連續(xù)波信號參數(shù)估計算法[J]. 電子與信息學報, 2015, 37(5): 1135-1140. doi: 10.11999/JEIT140876. LIU Ying, CHEN Dianren, CHEN Lei, et al. Parameters estimation algorithm of linear frequency modulated continuous wave signals based on period Choi-Williams Hough transform[J]. Journal of Electronics Information Technology, 2015, 37(5): 1135-1140. doi: 10.11999/JEIT 140876. 王忠仁, 林君, 李文偉. 基于Wigner-Ville分布的復(fù)雜時變信號的時頻分析[J]. 電子學報, 2005, 33(12): 2239-2241. WANG Zhongren, LIN Jun, and LI Wenwei. Time-frequency analysis for complex time-varying signals based on Wigner- Ville distribution[J]. Acta Electronica Sinica, 2005, 33(12): 2239-2241. 王勇, 姜義成. 多項式Wigner-Ville分布的頻域卷積實現(xiàn)[J]. 電子與信息學報, 2008, 30(2): 286-289. WANG Yong and JIANG Yicheng. Realization of polynomial Wigner-Ville distribution based on the convolution in frequency domain[J]. Journal of Electronics Information Technology, 2008, 30(2): 286-289. PENG H W, CHANG H T, and LIN C C. 2-D linear frequency modulation signal separation using fractional Fourier transform[C]. Proceedings of the International Symposium on Computer, Consumer and Control, Taibei, China, 2016: 755-758. doi: 10.1109/IS3C.2016.193. CANDS E J, CHARLTON P, and HELGASON H. Detecting highly oscillatory signals by chirplet path pursuit[J]. Applied and Computational Harmonic Analysis, 2008, 24(1): 14-40. 羅潔思, 于德介, 彭富強. 基于多尺度線調(diào)頻基信號稀疏分解的多分量LFM信號檢測[J]. 電子與信息學報, 2009, 31(11) 2781-2785. LUO Jiesi, YU Dejie, and PENG Fuqiang. Multicomponent LFM signals detection based on multi-scale Chirplet sparse signal decomposition[J]. Journal of Electronics Information Technology, 2009, 31(11): 2781-2785. 梅檢民, 肖云魁, 周斌, 等. 基于FRFT的改進多尺度線調(diào)頻基稀疏信號分解方法[J]. 振動工程學報, 2013, 26(1): 135-142. MEI Jianmin, XIAO Yunkui, ZHOU Bin, et al. Improved multi-scale chirplet sparse signal decomposition method based on fractional Fourier transform[J]. Journal of Vibration Engineering, 2013, 26(1): 135-142. 劉渝. 快速解線性調(diào)頻信號估計[J]. 數(shù)據(jù)采集與處理, 1999, 14(2): 175-178. LIU Yu. Fast dechirp algorithm[J]. Journal of Data Acquisition Processing, 1999, 14(2): 175-178. -