FiWi網(wǎng)絡(luò)比例公平和QoS感知的分級(jí)動(dòng)態(tài)帶寬分配機(jī)制
doi: 10.11999/JEIT160731
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61471303),國(guó)家留學(xué)基金 (20130700501)
Proportional Fair and QoS-aware Hierarchical Dynamic Bandwidth Allocation Scheme for Fiber-wireless Networks
Funds:
The National Natural Science Foundation of China (61471303), China Scholarship Council (20130700501)
-
摘要: 光纖網(wǎng)絡(luò)和無(wú)線(xiàn)接入技術(shù)結(jié)合的FiWi網(wǎng)絡(luò)可提供高容量、靈活以及低基礎(chǔ)設(shè)施成本的無(wú)線(xiàn)接入能力。由于FiWi網(wǎng)絡(luò)中客戶(hù)端業(yè)務(wù)量一般具有不穩(wěn)定性,很難提前有效預(yù)測(cè),高效公平的動(dòng)態(tài)帶寬分配(DBA)機(jī)制具有重要作用。該文針對(duì)EPON和WLAN構(gòu)成的FiWi網(wǎng)絡(luò)提出一種分級(jí)DBA機(jī)制。引入剩余帶寬比例因子解決多個(gè)輪詢(xún)周期內(nèi)各用戶(hù)分配的帶寬資源與其權(quán)值不匹配而產(chǎn)生的不公平問(wèn)題;聯(lián)合考慮業(yè)務(wù)優(yōu)先級(jí)、帶寬請(qǐng)求比例和網(wǎng)絡(luò)負(fù)載解決帶寬分配中的業(yè)務(wù)QoS保證和信道帶寬浪費(fèi)問(wèn)題。仿真實(shí)驗(yàn)表明,與現(xiàn)有文獻(xiàn)的DBA機(jī)制相比,系統(tǒng)公平性、吞吐量和信道利用率有明顯提升。且所提DBA算法不限定具體帶寬資源類(lèi)型,具有良好通用性。
-
關(guān)鍵詞:
- FiWi網(wǎng)絡(luò) /
- 以太網(wǎng)無(wú)源光網(wǎng)絡(luò) /
- 無(wú)線(xiàn)局域網(wǎng) /
- 動(dòng)態(tài)帶寬分配 /
- 比例公平 /
- QoS感知
Abstract: The integration of optical and wireless technologies, denoted as Fiber-Wireless (FiWi) networks, can provide not only high capacity but also flexible wireless access ability with less infrastructure deployment. Since data traffic generated in FiWi networks usually experiences unstable and unpredictable, it is difficult to perform traffic prediction in advance. An effective and fair Dynamic Bandwidth Allocation (DBA) scheme plays an important role. This paper proposes an upstream fair hierarchical DBA scheme for EPON-WLAN networks. Excess bandwidth proportion factor is introduced to address the unfair issue due to the unmatched problem between the allocated bandwidth resource and the assigned user weight among multiple granting cycles. On the other hand, in order to deal with the QoS guarantee and bandwidth waste issue in bandwidth allocation, we jointly taken into account of different traffic QoS priorities, bandwidth requirement proportion, and actual traffic load. Extensive simulation results show that compared with the existing DBA schemes, the proposed hierarchical DBA scheme can improve proportional fairness, throughput and channel utilization. Moreover, the proposed FiWi DBA scheme does not refer to a specific bandwidth resource types, thus obtains good generality. -
IEEE Standard for Information Technology-Telecommunica- tions and information exchange between systems-local and metropolitan area networks-specific requirements, part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. Amendment 3: Enhancements forvery high throughput in the 60 GHz band[S]. March 2014. GHAZISAIDI N and MAIER M. Fiber-Wireless (FiWi) access networks: Challenges and opportunities[J]. IEEE Network. 2011, 17(1): 36-42. doi: 10.1109/MNET.2011. 5687951. SARIGIANNIDIS A G, ILORIDOU M, NICOPOLITIDIS P, et al. Architectures and bandwidth allocation schemes for hybrid wireless-optical networks[J]. IEEE Communication Surveys Tutorials, 2015, 17(1): 427-468. doi: 10.1109/ COMST.2014.2356640. YANG K, OU Shumao, GUILD Ken, et al. Convergence of Ethernet PON and IEEE 802.16 broadband access networks and its QoS-aware dynamic bandwidth allocation scheme[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(2): 101-116. doi: 10.1109/JSAC.2009.090202. JIANG Ling, FU MingLei, and LE Zichun. Hierarchical QoS-aware dynamic bandwidth allocation algorithm for wireless optical broadband access network[C]. International Conference on Electronics, Communications and Control, Ningbo, China, 2011: 4329-4332. doi: 10.1109/ICECC.2011. 6066634. SARIGIANNIDIS P, LOUTA M, PAPADIMITRIOU G, et al. Alleviating the high propagation delays in FiWi networks: A prediction-based DBA scheme for 10G-EPON-WiMAX systems[C]. International Workshop on Fiber Optics in Access Network, Brno, Czechoslovakia, 2015: 45-50. doi: 10.1109/FOAN.2015.7320478. RANAWEERA C, WONG E, LIM C, et al. Architecture discovery enabled resource allocation mechanism for next generation optical-wireless converged networks[J]. Optical Communication Network, 2013, 5(9): 1083-1095. SARIGIANNIDIS A and NICOPOLITIDIS P. Quality- of-service-aware fair bandwidth allocation scheme for fiber wireless networks[J]. IET Networks, 2016, 5(3): 56-63. doi: 10.1049/iet-net.2015.0090. NAM R, NM D, SK S, et al. The delay and fairness study of a centralized EPON DBA algorithm[C]. IEEE Region 10 Symposium, Kuala Lumpur, Malaysia, 2014: 301-305. doi: 10.1109/TENCONSpring.2014.6863046. LI Yan, WANG Jianping, and QIAO Chunming. Integrated Fiber-Wireless (FiWi) access networks supporting inter-ONU communications[J]. Journal of Lightwave Technology, 2010, 28(5): 714-724. doi: 10.1109/JLT.2009.2038598. HE Rong, XIE Hui, and FANG Xuming. A long-term proportional fair dynamic bandwidth allocation scheme for EPON[C]. The 25th Wireless and Optical Communication Conference (WOCC). Chengdu, China, 2016: 1-5. doi: 10. 1109/WOCC.2016.7506545. MCGARRY M P, REISSLEIN M, AURZADA F, et al. Shortest Propagation Delay (SPD) first scheduling for EPONs with heterogeneous propagation delays[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(6): 849-862. doi: 10.1109/JSAC.2010.100810. VAN D P, RIMAL B Pr, MAIER M, et al. ECO-FiWi: An energy conservation scheme for integrated fiber-wireless access networks[J]. IEEE Transactions on Wireless Communications, 2016, 15 (6): 3979-3994. doi: 10.1109/ TWC.2016.2531694. MCGARRY M P, REISSLEIN M, COLBOURN C J, et al. Just-in-time scheduling for multichannel EPONs[J]. Journal of Lightwave Technology, 2008, 26(10): 1204-1216. doi: 10. 1109/JLT.2008.919366. HE Rong and FANG Xuming. A fair MAC scheme for EDCA based wireless networks[C]. International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, Washington DC, USA, 2009: 1-6. doi: 10.1109/TRIDENTCOM.2009.4976242. -
計(jì)量
- 文章訪(fǎng)問(wèn)數(shù): 1294
- HTML全文瀏覽量: 117
- PDF下載量: 336
- 被引次數(shù): 0