對(duì)海雷達(dá)目標(biāo)識(shí)別中全極化HRRP的特征提取與選擇
doi: 10.11999/JEIT160722
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61401493),國(guó)家部委基金(9140A01010415JB11002)
Feature Extraction and Selection of Full Polarization HRRP in Target Recognition Process of Maritime Surveillance Radar
Funds:
The National Natural Science Foundation of China (61401493), The National Ministries Foundation of China (9140A01010415JB11002)
-
摘要: 充分、有效地利用目標(biāo)全極化HRRP的特征信息是提高對(duì)海雷達(dá)目標(biāo)識(shí)別率的研究熱點(diǎn)之一。該文利用CST軟件仿真建立了7類海上目標(biāo)在不同方位角下的全極化HRRP數(shù)據(jù)庫(kù)。在此基礎(chǔ)上,提取了4類共39個(gè)特征。提出一種基于歸一化互信息(NMI)并利用模擬退火(SA)算法進(jìn)行優(yōu)化的全局最優(yōu)特征選擇算法,并命名為NMI-SA?;贖RRP數(shù)據(jù)集以及9個(gè)UCI數(shù)據(jù)集,利用k-近鄰分類器將該算法與另外3種常用的特征選擇算法進(jìn)行對(duì)比,結(jié)果表明新算法選擇的特征具有良好的可分性和較低的冗余度,最終用于分類時(shí)的正確率總體優(yōu)于其余3種算法。最后,用該算法對(duì)全極化HRRP的39個(gè)特征進(jìn)行重點(diǎn)分析,選擇出25個(gè)辨別力強(qiáng)、冗余度低的特征。Abstract: Making full and effective use of target polarization information from High Resolution Range Profile (HRRP) is a hot issue for improving the recognition performance of maritime surveillance radar. A HRRP database with seven maritime targets classes from various aspect angles is established, on which thirty-nine features from four categories are defined. A novel feature selection method based on the Normalized Mutual Information (NMI) and Simulated Annealing (SA) algorithm is presented, named as NMI-SA. The effectiveness of the NMI-SA is proved by comparison with three other methods using HRRP dataset and eight from UCI machine learning repository. Finally, the NMI-SA is applied to the HRRP dataset to find twenty-five high discriminant and low redundancy features.
-
Key words:
- Fully polarized HRRP /
- Feature extraction /
- Feature selection /
- Mutual information /
- Simulated annealing
-
馮博, 陳渤, 王鵬輝, 等. 利用穩(wěn)健字典學(xué)習(xí)的雷達(dá)高分辨距離像目標(biāo)識(shí)別算法[J]. 電子與信息學(xué)報(bào), 2015, 37(6): 1457-1462. doi: 10.11999/JEIT141227. FENG Bo, CHEN Bo, WANG Penghui, et al. Radar high resolution range profile target recognition algorithm via stable dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(6): 1457-1462. doi: 10. 11999/JEIT141227. 郭尊華, 李達(dá), 張伯彥. 雷達(dá)高距離分辨率一維像目標(biāo)識(shí)別[J]. 系統(tǒng)工程與電子技術(shù), 2013, 35(1): 53-60. doi: 10.3969/j.issn. 1001-506X.2013.01.09. GUO Zunhua, LI Da, and ZHANG Boyan. Survey of radar target recognition using one-dimensional high range resolution profiles[J]. Systems Engineering and Electronics, 2013, 35(1): 53-60. doi: 10.3969/j.issn.1001-506X.2013.01.09. PICHER C and KHOTANZAD A. Nonlinear classifier combination for a maritime target recognition task[C]. Proceedings of the IEEE Radar Conference, Pasadena, 2009: 873-877. doi: 10.1109/RADAR.2009.4976923. 劉盛啟, 占榮輝, 翟慶林, 等. 基于聯(lián)合稀疏性的多視全極化HRRP目標(biāo)識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2016, 38(7): 1724-1730. doi: 10.11999/JEIT151019. LIU Shengqi, ZHAN Ronghui, ZHAI Qinglin, et al. Multi- view polarization HRRP target recognition based on joint sparsity[J]. Journal of Electronics Information Technology, 2016, 38(7): 1724-1730. doi: 10.11999/JEIT151019. BERIZZI F, MARTORELLA M, CAPRIA A, et al. H/ polarimetric features for man-made target classification[C]. Proceedings of the IEEE Radar Conference, Rome, 2008: 1-6. doi: 10.1109/RADAR.2008.4721003. 楊磊, 王曉丹, 張玉璽, 等. 基于多極化特征提取和SVM的目標(biāo)識(shí)別方法[J]. 現(xiàn)代防御技術(shù), 2012, 40(5): 150-155. doi: 10.3969/j.issn.1009-086x.2012.05.029. YANG Lei, Wang Xiaodan, ZHANG Yuxi, et al. Radar target recognition approach based on multi polarization multi target feature extraction and SVM[J]. Modern Defence Technology, 2012, 40(5): 150-155. doi: 10.3969/j.issn.1009-086x.2012.05. 029. 雷蕾, 王曉丹, 邢雅瓊, 等. 結(jié)合SVM和DS證據(jù)理論的多極化HRRP分類研究[J]. 控制與決策, 2013, 28(6): 861-866. doi: 10.13195/j.cd.2013.06.63.leil.011. LEI Lei, WANG Xiaodan, XING Yaqiong, et al. Multi- polarized HRRP classification by SVM and DS evidence theory[J]. Control and Decision, 2013, 28(6): 861-866. doi: 10.13195/j.cd.2013.06.63.leil.011. 郭雷. 寬帶雷達(dá)目標(biāo)極化特征提取與核方法識(shí)別研究[D]. [博士論文], 國(guó)防科學(xué)技術(shù)大學(xué), 2009: 15-49. GUO Lei. Wideband radar target polarimetric feature extraction and recognition method based on kernel method [D]. [Ph.D. dissertation], National University of Defense Technology, 2009: 15-49. LIU H, SUN J, LIU L, et al. Feature selection with dynamic mutual information[J]. Pattern Recognition, 2009, 42(7): 1330-1339. doi: 10.1016/j.patcog.2008.10.028. UNLER A, MURAT A, and CHINNAM R B. mr 2 PSO : a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification[J]. Information Sciences, 2011, 181(20): 4625-4641. doi: 10.1016/j.ins.2010.05.037. GARCIA M, GOMEZ F, MELIAN B, et al. High-dimensional feature selection via feature grouping: a variable neighborhood search approach[J]. Information Sciences, 2016, 326(C): 102-118. doi: 10.1016/j.ins.2015.07.041. BROWN G, POCOCK A, ZHAO M J, et al. Conditional likelihood maximization: a unifying framework for information theoretic feature selection[J]. Journal of Machine Learning Research, 2012, 13(1): 27-66. LYSIAK R, KURZYNSKI M, and WOLOSZYNSKI T. Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers[J]. Neurocomputing, 2014, 126(1): 29-35. doi: 10.1016/j.neucom. 2013.01.052. KWAK N and CHOI C H. Input feature selection for classification problems[J]. IEEE Transactions on Neural Networks, 2002, 13(1): 143-159. doi: 10.1109/72.977291. PENG H, LONG F, and DING C. Feature selection based on mutual information: criteria of max-dependency, max- relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2005, 27(8): 1226-1238. doi: 10.1109/TPAMI.2005.159. ESTEVEZ P A, TESMER M, PEREZ C A, et al. Normalized mutual information feature selection[J]. IEEE Transactions on Neural Networks, 2009, 20(2): 189-201. doi: 10.1109/TNN. 2008.2005601. ISAKOV S V, ZINTCHENKO I N, RONNOW T F, et al. Optimised simulated annealing for icing spin glasses[J]. Computer Physics Communications, 2015, 192: 265-271. doi: 10.1016/j.cpc.2015.02.015. -
計(jì)量
- 文章訪問(wèn)數(shù): 1735
- HTML全文瀏覽量: 178
- PDF下載量: 353
- 被引次數(shù): 0