基于瞬態(tài)電磁響應(yīng)的埋地細(xì)長(zhǎng)良導(dǎo)體目標(biāo)長(zhǎng)度和方位估計(jì)
doi: 10.11999/JEIT160718
-
1.
(西安電子科技大學(xué)電子工程學(xué)院 西安 710071) ②(桂林電子科技大學(xué)廣西無(wú)線寬帶通信與信號(hào)處理重點(diǎn)實(shí)驗(yàn)室 桂林 541004)
國(guó)家自然科學(xué)基金(61371186, 61162007),廣西自然科學(xué)基金(2013GXNSFFA019004)
Estimation of Length and Orientation of Subsurface Thin-wire Structures Based on Transient Electromagnetic Responses
-
1.
(School of Electronic Engineering, Xidian University, Xi&rsquo
The National Natural Science Foundation of China (61371186, 61162007), Guangxi Natural Science Foundation (2013GXNSFFA019004)
-
摘要: 對(duì)地下管道電纜等目標(biāo)的幾何特征估計(jì)在城市建設(shè)和市政基礎(chǔ)設(shè)施維護(hù)中尤為重要,針對(duì)此類埋地細(xì)長(zhǎng)良導(dǎo)體目標(biāo),該文提出一種基于瞬態(tài)電磁響應(yīng)的管道目標(biāo)長(zhǎng)度與方位角估計(jì)方法。建立了介電媒質(zhì)中水平極化電磁波在布魯斯特角入射下細(xì)長(zhǎng)良導(dǎo)體目標(biāo)后向散射回波時(shí)延差模型,通過(guò)分析瞬態(tài)響應(yīng)時(shí)頻分布,建立了其諧振態(tài)與目標(biāo)長(zhǎng)度的關(guān)系,并由此估計(jì)目標(biāo)的長(zhǎng)度。利用瞬態(tài)響應(yīng)早時(shí)部分首達(dá)回波與晚時(shí)部分諧振回波的能量變化趨勢(shì),判斷電磁波到達(dá)目標(biāo)兩端點(diǎn)的時(shí)間順序,再根據(jù)首達(dá)時(shí)間延遲差估計(jì)目標(biāo)的方位角。數(shù)值仿真結(jié)果表明在電場(chǎng)方向與目標(biāo)軸線方向偏離不大的情況下,提出方法有效并且對(duì)噪聲具有魯棒性,適用于信噪比SNR5 dB的長(zhǎng)度估計(jì)以及SNR10 dB的方位角估計(jì)。
-
關(guān)鍵詞:
- 瞬態(tài)響應(yīng) /
- 諧振 /
- 長(zhǎng)度估計(jì) /
- 方位估計(jì)
Abstract: It is particularly important to estimate the geometric features of buried pipe cables in urban construction and municipal infrastructure maintenance. For this kind of subsurface thin-wire structure targets, a method for estimation of the length and orientation of a target based on transient electromagnetic responses is proposed. In this method, a time delay difference model of the backscattering responses from such thin-wire structures illuminated by electromagnetic wave at Brewsters angle with horizontal polarization is established. By analyzing the time-frequency distribution of the transient responses, the relationship between the resonant state and the target length is established and the length of the target is estimated. The energy change between the early time responses and late time resonances is applied to determining the time sequence of the arrival of the electromagnetic wave to the target. Then the target orientation is estimated by the time delay difference of early time responses. Numerical simulation results show that the proposed method is effective in the case of the direction of electric field close to the target axial direction. Meanwhile, the proposed method is robust to noise, and can be applied to length estimation forSNR5 dB and orientation estimation for SNR10 dB.-
Key words:
- Transient responses /
- Resonances /
- Length estimation /
- Orientation estimation
-
DINGES M, AUSTIN R, and HAVEN J. Non-invasive Non-destructive Assessment of Underground Pipe[M]. Colorado: Amer Water Works Assn, 2002: 1-8. JOSHI N. Prestressed Concrete Pipes and Pipelines[M]. Oxford: Alpha Science International Ltd., 2012: 1-10. 王強(qiáng), 苗金明. 地下管網(wǎng)檢測(cè)技術(shù)[M]. 北京: 機(jī)械工業(yè)出版社, 2014: 1-6. WANG Qiang and MIAO Jinming. Underground Pipe Network Detection Technology[M]. Beijing: Machinery Industry Press, 2014: 1-6. YANG Hongwei, YANG Zekun, and PEI Yukun. Ground- penetrating radar for soil and underground pipelines using the forward modeling simulation method[J]. Optik, 2014, 125(23): 7075-7079. doi: 10.1016/j.ijleo.2014.08.099. 曾昭發(fā), 劉四新, 王者江, 等. 探地雷達(dá)方法原理及應(yīng)用[M]. 北京: 科學(xué)出版社, 2006: 71. ZENG Zhaofa, LIU Sixin, WANG Zhejiang, et al. Principle and Application of Ground Penetrating Radar[M]. Beijing: Science Press, 2006: 71. SNICKER E, MIKHNEV V, and OLKKONEN M. Discrimination of buried objects in impulse GPR using phase retrieval technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1001-1007. doi: 10.1109/TGRS. 2014.2331427. TSOFLIAS G, PERLL C, BAKER M, et al. Cross-polarized GPR imaging of fracture flow channeling[J]. Journal of Earth Science, 2015, 26(6): 776-784. doi: 10.1007/s12583-015-0612- 1. LIU Hai, ZHAO Jianguo, and SATO M. A hybrid dual- polarization GPR system for detection of linear objects[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 317-320. doi: 10.1109/LAWP.2014.2363826. CHEN K, NYQUIST D, ROTHWELL E, et al. Radar target discrimination by convolution of radar return with extinction pulse and single mode extraction signals[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(7): 896-904. doi: 10.1109/TAP.1986.1143908. LI Fenghua, LIU Qinghuo, and SONG Linping. Three-dimensional reconstruction of objects buried in layered media[C]. IEEE Antennas and Propagation Society International Symposium, California, USA, 2004: 193-196. doi: 10.1109/APS.2004.1329592. DANIELE V and LOMBARDI G. Arbitrarily oriented perfectly conducting wedge over a dielectric half-space: diffraction and total far field[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(4): 1416-1433. doi: 10.1109/TAP.2016.2524412. CHEN C. Electromagnetic resonances of immersed dielectric spheres[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(7): 1074-1083. doi: 10.1109/8.704811. LUI H, PERSSON M, and SHULEY N. Joint time-frequency analysis of transient electromagnetic scattering from a subsurface target[J]. IEEE Antennas and Propagation Magazine, 2012, 54(5): 109-130. doi: 10.1109/MAP.2012. 6348122. JANG S, CHOI W, SARKAR T, et al. Exploiting early time response using the fractional Fourier transform for analyzing transient radar returns[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(11): 3109-3120. doi: 10.1109/TAP. 2004.835165. 周智敏, 金添, 等. 超寬帶地表穿透成像雷達(dá)[M]. 北京: 國(guó)防工業(yè)出版社, 2013: 154-180. ZHOU Zhimin, JIN Tian, et al. Ultrawideband Ground Penetrating Imaging Radar[M]. Beijing: National Defense Industry Press, 2013: 154-180. BOWMAN J, SENIOR T, and USLENGHI P. Electromagnetic and Acoustic Scattering by Simple Shapes [M]. New York, John Wiley Sons, INC. 1969: 92-127. ALBANI M, CARLUCCIO G, and PATHAK P. A uniform geometrical theory of diffraction for vertices formed by truncated curved wedges[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3136-3143. doi: 10.1109/TAP. 2015.2427877. PATHAK P, CARLUCCIO G, and ALBANI M. The uniform geometrical theory of diffraction and some of its applications [J]. IEEE Antennas and Propagation Magazine, 2013, 55(4): 41-69. doi: 10.1109/MAP.2013.6645140. XIAO Gaobiao, TIAN Xuezhe, LUO Wei, et al. Impulse responses and the late time stability properties of time-domain integral equations[J]. IET Microwaves, Antennas Propagation, 2015, 9(7): 603-610. doi: 10.1049/ iet-map.2014.0318. CHAD O, HARGRAVE I, VAUGHAN L, et al. Late-time estimation for resonance-based radar target identification[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11): 5865-5871. doi: 10.1109/TAP.2014.2350507. SUN Meng, BASTARD C, PINEL N, et al. Road surface layers geometric parameters estimation by ground penetrating radar using estimation of signal parameters via rotational invariance techniques method[J]. IET Radar, Sonar Navigation, 2016, 10(3): 603-609. doi: 10.1049/iet- rsn.2015.0374. 粟嘉, 陶海紅, 饒烜, 等. 時(shí)頻面滑窗掩膜的多分量信號(hào)高效重構(gòu)算法[J]. 電子與信息學(xué)報(bào), 2015, 37(4): 804-810. doi: 10.11999/JEIT140511. SU Jia, TAO Haihong, RAO Xuan, et al. An efficient multi- component signals reconstruction algorithm using masking technique based on sliding window in time-frequency plane[J]. Journal of Electronics Information Technology, 2015, 37(4): 804-810. doi: 10.11999/JEIT140511. HUSSEIN R, SHABAN K, and EL-HAG A. Wavelet transform with histogram based threshold estimation for online partial discharge signal denoising[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12): 3601-3614. doi: 10.1109/TIM.2015.2454651. -
計(jì)量
- 文章訪問(wèn)數(shù): 1147
- HTML全文瀏覽量: 153
- PDF下載量: 382
- 被引次數(shù): 0