高軌星機(jī)BiSAR分辨率分析及成像參數(shù)優(yōu)化設(shè)計
doi: 10.11999/JEIT160656
基金項目:
國家自然科學(xué)基金(61301292),空間測控通信創(chuàng)新探索基金(201509A)
Method for GEO Spaceborne-airborne BiSAR Resolution Analysis and Imaging Parameters Optimal Design
Funds:
The National Natural Science Foundation of China (61301292), AeroSpace T.T. C. Innovation Program (201509A)
-
摘要: 高軌SAR具有覆蓋范圍廣,重訪時間短的優(yōu)勢。但是如果采用高軌SAR衛(wèi)星同時作為發(fā)射機(jī)和接收機(jī),不能充分發(fā)揮高軌SAR的這些優(yōu)點。采用飛機(jī)或低軌衛(wèi)星作為接收機(jī)平臺不但能夠更靈活地針對目標(biāo)區(qū)域成像,而且分辨率也將大大提高。但是星機(jī)雙基SAR(BiSAR)的幾何構(gòu)型復(fù)雜,難以直觀地獲知任意幾何構(gòu)型BiSAR的分辨率特性。該文從BiSAR基平面分辨率出發(fā),根據(jù)幾何構(gòu)型得到基平面分辨率與地平面分辨率之間的幾何關(guān)系,解析地表示出了BiSAR在地平面上的分辨率形狀。據(jù)此可以評估BiSAR系統(tǒng)的分辨力,并且能夠通過優(yōu)化設(shè)計系統(tǒng)帶寬和合成孔徑時間兩個參數(shù)使得BiSAR系統(tǒng)能夠?qū)崿F(xiàn)更好的分辨率特性。最后,仿真結(jié)果驗證了方法的有效性。
-
關(guān)鍵詞:
- 高軌星機(jī)BiSAR /
- 信號帶寬 /
- 合成孔徑時間 /
- 分辨率橢圓
Abstract: The GEO SAR has its own features such as wide coverage and short revisit time. However, when the GEO SAR is both used as a transmitter and a receiver, its advantages is not well exploited. If an airplane or a LEO satellite is adopted as a platform of the receiver, not only the interesting regions can be observed flexibly, but also finer resolution can be achieved. However, the geometry of the BiSAR is complicated, so it is not easy to acquire how much resolution an arbitrary BiSAR system can reach. Thus starting with the resolution on the basic plane of a BiSAR system, and combined with the resolutions projection relation between the basic plane and the plane tangent to the earths surface, the resolution shapes expression on the ground can be got finally. Based on the expression, the resolution of a BiSAR system can be assessed, and finer resolution can be realized through optimizing two parameters, including signal bandwidth and synthetic aperture time. Finally, the simulation results validate the effectiveness of the proposed method. -
HU Bin, JIANG Yicheng, ZHANG Shunsheng, et al. Focusing of geosynchronous SAR with nonlinear chirp scaling algorithm[J]. Electronics Letters, 2015, 51(15): 1195-1197. doi: 10.1049/el.2015.0580. WU Xiaoli, WANG Wei, CHEN Qi, et al. The burst mode of geosynchronous synthetic aperture radar[C]. IEEE Asia- Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 2015: 200-203. doi: 10.1109/APSAR.2015. 7306188. ZHANG Xin, HUANG Puming, and WANG Weiwei. Equivalent slant range model for geosynchronous SAR[J]. Electronics Letters, 2015, 51(10): 783-785. doi: 10.1049/el. 2014.3593. WU Junjie, SUN Zhichao, HUANG Yulin, et al. Geosynchronous spaceborne-airborne bistatic SAR: Potentials and prospects[C]. IEEE Radar Conference (RadarCon), Arlington, VA, USA, 2015: 1172-1176. doi: 10.1109/ RADAR.2015.7131171. ZENG Tao, AO Dongyang, HU Cheng, et al. Multiangle BSAR imaging based on BeiDou-2 navigation satellite system: Experiments and preliminary results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5760-5773. doi: 10.1109/TGRS.2015.2430312. QIU Xiaolan, HAN Bin, MENG Dadi, et al. An azimuth resample method for bistatic SAR motion compensation[C]. European Conference on Synthetic Aperture Radar (EUSAR), Aachen, Germany, 2010: 1-4. ZENG Dazhi, ZENG Tao, HU Cheng, et al. Back-projection algorithm characteristic analysis in forward-looking bistatic SAR[C]. CIE International Conference on Radar, Shanghai, China, 2006: 1-4. doi: 10.1109/ICR.2006.343181. ZENG Tao, CHERNIAKOV M, and LONG Teng, Generalized approach to resolution analysis in BSAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(2): 461-474. doi: 10.1109/TAES.2005.1468741. LIU F, ANTONIOU M, ZENG Z, et al. Point spread function analysis for BSAR with GNSS transmitters and long dwell times theory and experimental confirmation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 781-785. doi: 10.1109/LGRS.2012.2223655. SUN Zhichao, WU Junjie, HUANG Yulin, et al. Inclined geosynchronous spaceborne-airborne bistatic SAR: Performance analysis and mission design[C]. IEEE Radar Conference (RadarCon), Arlington, VA, USA, 2015: 1177-1181. doi: 10.1109/RADAR.2015.7131172. WANG Jingen, WANG Yanfei, ZHANG Jianming, et al. Resolution calculation and analysis in bistatic SAR with geostationary illuminator[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 194-198. doi: 10.1109/LGRS. 2012.2197850. LI Zengliang, ZHAO Xin, and DING Zegang. Analysis of diving squint SAR resolution[C]. Proceedings of 2011 IEEE CIE International Conference on Radar, 2011, 1: 875-878. doi: 10.1109/CIE-Radar.2011.6159680. 龍杰, 姚迪, 孫英欽, 等. 基于分辨橢圓的前斜SAR分辨率分析方法[J]. 電子學(xué)報, 2013, 41(12): 2493-2495. doi: 10.3969/ j.issn.0372-2112.2013.12.027. LONG Jie, YAO Di, SUN Yingqin, et al. The method of resolution analysis based on distinguishable ellipse in squinted SAR[J]. Acta Electronica Sinica, 2013, 41(12): 2493-2495. doi: 10.3969/j.issn.0372-2112.2013.12.027. CHEN Jianlai, SUN Guangcai, YANG Jun, et al. Systematic analyses of challenges and solutions in geosynchronous synthetic aperture radar[C]. Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 2015: 78-79. doi: 10.1109/APSAR.2015.7306158. ZHANG Qingjun, YIN Wei, and DING Zegang. An optimal resolution steering method for geosynchronous orbit SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1732-1736. doi: 10.1109/LGRS.2014.2307167. -
計量
- 文章訪問數(shù): 1099
- HTML全文瀏覽量: 111
- PDF下載量: 265
- 被引次數(shù): 0