基于直接采樣法和子空間優(yōu)化法的多介質(zhì)目標(biāo)混合逆散射成像方法
doi: 10.11999/JEIT160534
國(guó)家自然科學(xué)基金(61561034, 61261010, 41505015),江西省自然科學(xué)基金(2015BAB207001),江西省科技支撐計(jì)劃(20151BBE50090),江西省研究生創(chuàng)新專(zhuān)項(xiàng)基金(YC2016-S068)
DSM-SOM Based Hybrid Inverse Scattering Method for Multiple Dielectric Objects Reconstruction
The National Natural Science Foundation of China (61561034, 61261010, 41505015), Jiangxi Provincial Natural Science Foundation (2015BAB207001), The Projects in the Jiangxi Provincial Science Technology Pillar Program (20151BBE- 50090), Jiangxi Provincial Graduate Innovation Special Foundation (YC2016-S068)
-
摘要: 該文提出一種結(jié)合定性與定量成像方法優(yōu)勢(shì)的混合電磁場(chǎng)逆散射成像方法,并將該方法應(yīng)用于重構(gòu)多介質(zhì)目標(biāo)的電性能參數(shù)的空間分布信息。該混合成像方法首先利用基于直接采樣法(Direct Sampling Method, DSM)的定性方法快速重構(gòu)目標(biāo)的感興趣區(qū)域(Region Of Interesting, ROI)、目標(biāo)形狀及目標(biāo)個(gè)數(shù)的先驗(yàn)信息。在此基礎(chǔ)上,利用基于子空間優(yōu)化定量方法結(jié)合該先驗(yàn)信息迭代修正目標(biāo)的幾何形狀信息,并重構(gòu)目標(biāo)的電性能參數(shù)的空間分布。基于菲涅爾實(shí)驗(yàn)室實(shí)測(cè)散射場(chǎng)數(shù)據(jù)表示,該方法與子空間優(yōu)化法SOM(Subspace-based Optimization Method)定量成像精度相比擬的情況下,極大地降低了定量方法的計(jì)算復(fù)雜度和提高算法收斂速度。
-
關(guān)鍵詞:
- 逆散射 /
- 直接采樣方法 /
- 子空間優(yōu)化方法
Abstract: This paper proposes a hybrid electromagnetic field inverse scattering imaging method based on the advantages of the qualitative and quantitative imaging methods,and it is applied to rebuilding the space distribution information of electric parameters for multi objects. First, the prior knowledge of the Region Of Interesting (ROI) of target, object shape and target number is reconstructed by using Direct Sampling Method (DSM). Then, the geometry information of the objects and the space iteratively corrected distribution information of electric parameters is reconstructed by Subspace-based Optimization quantitative Method(SOM). The experimental result for the scattering field data of Fresnel laboratory shows that the imaging accuracy of this method is comparable to SOM. More over, the proposed technique greatly reduces the computational complexity and improves the convergence speed. -
SHAH P, KHANKHOJE U, and MOGHADDAM M. Inverse scattering using a joint L1-L2 based regularization[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(4): 1373-1384. doi: 10.1109/TAP.2016.2529641. RABBANI M, TAWAKONI A, and DEHMOLLAIAN M. A hybrid quantitative method for inverse scattering of multiple dielectric objects[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(3): 977-987. doi: 10.1109/TAP.2016. 2515124. CHEN X. Subspace-based optimization method for solving inverse-scattering problems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 42-49. doi: 10.1109/TGRS.2009.2025122. CUI Tiejun, AYDINER A, CHEN Siyuan, et al. Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 339-346. doi: 10.1109/36.905242. DONATO L D, BEVACQUA M T, CROCK L, et al. Inverse scattering via virtual experiments and contrast source regularization[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1669-1677. doi: 10.1109/TAP.2015. 2392124. CAPONE F and DARRIGRAND E. The linear sampling method for the inverse electromagnetic scattering problem for screens[C]. Society for Industrial and Applied Mathematics, 2010: 645-646. ITO K, JIN B, and ZHOU J. A direct sampling method to an inverse medium scattering problem[J]. Inverse Problems, 2012, 28(2): 25003-25013. doi: 10.1088/0266-5611/28/2/ 025003. XU K, ZHONG Y, SONG R, et al. Multiplicative-regularized FFT twofold subspace-based optimization method for inverse scattering problems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 841-850. doi: 10.1109/ TGRS.2014.2329032. BRIGNONE M, BOZZA G, RANDAZZO A, et al. A hybrid approach to 3D microwave imaging by using linear sampling and ACO[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(10): 3224-3232. doi: 10.1109/TAP. 2008.929504. DORN O and ELSEVIER D. Level set methods for inverse scattering[J]. Inverse Problems, 2006, 22(22): R67-R131. doi: 10.1088/0266-5611/22/4/R01. YE X, POLE L, OLIVIER G, et al. Multi-resolution subspace-based optimization method for solving three- dimensional inverse scattering problems[J]. Journal of the Optical Society of America A, 2015, 32(11): 2218-2226. doi: 10.1364/JOSAA.32.002218. SORIMACHI M and NISHIMURA S. Guest editors introduction: testing inversion algorithms against experimental data: inhomogeneous targets[J]. Inverse Problems, 2005, 21(6): S1-S3. doi: 10.1016/0168-0102(85) 90273. 肖志濤, 史文靜, 耿磊, 等. 基于相位信息和主成分分析的對(duì)稱(chēng)性檢測(cè)方法[J]. 電子與信息學(xué)報(bào), 2014, 36(9): 2041-2046. doi: 10.3724/SP.J.1146.2013.01598. XIAO Zhitao, SHI Wenjing, GENG Lei, et al. Symmetry detection based on phase information and principal component analysis[J]. Journal of Electronics Information Technology, 2014, 36(9): 2041-2046. doi: 10.3724/SP.J.1146. 2013.01598. -
計(jì)量
- 文章訪問(wèn)數(shù): 1634
- HTML全文瀏覽量: 148
- PDF下載量: 460
- 被引次數(shù): 0