基于加權(quán)L1正則化的水下圖像清晰化算法
doi: 10.11999/JEIT160481
-
1.
(天津大學電子信息工程學院 天津 300072) ②(國家海洋技術(shù)中心 天津 300112)
基金項目:
國家自然科學基金(61372145, 61201371)
Underwater Images Visibility Improving Algorithm with Weighted L1 Regularization
-
1.
(School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China)
Funds:
The National Natural Science Foundation of China (61372145, 61201371)
-
摘要: 水體對光能量有較強的吸收和散射作用,造成水下圖像顏色失真,對比度下降。傳統(tǒng)的圖像增強方法和復(fù)原方法處理水下圖像時各有不足,該文結(jié)合水下成像物理模型和基于Retinex理論的圖像增強算法,提出水下圖像清晰化方案。首先,基于圖像統(tǒng)計特性給出一種簡單的顏色校正方法,以去除顏色失真;在水下圖像成像理論框架下,利用邊界約束求得初始透射率,再使用自適應(yīng)維納濾波進行優(yōu)化;在此基礎(chǔ)上,提出加權(quán)L1正則化模型對亮度層進行增強,最后再進行自適應(yīng)Gamma校正。實驗結(jié)果表明,算法可以有效去除顏色失真,而且能夠大幅提升圖像的對比度和清晰度。
-
關(guān)鍵詞:
- 圖像處理 /
- 顏色校正 /
- 透射率 /
- 加權(quán)L1正則化 /
- 自適應(yīng)Gamma校正
Abstract: Due to the absorption and scattering when light is traveling in water, there are two major problems of underwater imaging: color distortion and low contrast. Traditional enhancement and restoration methods can not handle these problems very well, so, this paper proposes a new approach based on the underwater optical imaging model and a Retinex-based enhancing approach. Firstly, a simple color correction method based on statistical method is adopted to address the color distortion. Then the adaptive Wiener filter is used to optimize the initial transmission map with the boundary constraints. In order to make the result more naturalness, a weighted L1 regularization model is proposed to enhance the luminance layer. Finally, an adaptive Gamma correction operation is adopted for post-processing. Experimental results demonstrate the effectiveness of the proposed method in restoring the original color of the scene and enhancing image contrast and the visibility. -
JAFFE J S. Underwater optical imaging: The past, the present, and the prospects[J]. IEEE Journal of Oceanic Engineering, 2014, 40(3): 683-700. doi: 10.1109/JOE.2014. 2350751. SCHETTINI R and CORCHS S. Underwater image processing: State of the art of restoration and image enhancement methods[J]. EURASIP Journal on Advances in Signal Processing, 2010: 746052. doi: 10.1155/2010/ 746052. LIU Chao and MENG W. Removal of water scattering[C]. IEEE International Conference on Computer Engineering and Technology, Chengdu, China, 2010: 235-239. YANG Hungyu, CHEN Peiyin, SHIA U Yeuhorng, et al. Low complexity underwater image enhancement based on dark channel prior[C]. IEEE International Conference on Computer Science and Automation Engineering (CSAE), Zhangjiajie, China, 2012: 791-795. WEN Haocheng, TIAN Yonghong, HUANG Tiejun, et al. Single underwater image enhancement with a new optical model[C]. IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 2013: 753-756. GUO Junkai, SUNG Chiachi, and CHANG Henghua. Improving visibility and fidelity of underwater images using an adaptive restoration algorithm[C]. IEEE Oceanic Engineering Society 2014, Taipei, China, 2014: 1-6. CHIANG J Y and CHEN Y C. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1756-1769. doi: 10.1109/TIP.2011.2179666. NICHOLAS C B, ANUSH M, and EUSTICE R M. Initial results in underwater single image dehazing[C]. IEEE Oceanic Engineering Society 2010, Seattle, WA, USA, 2010: 1-8. ADRIAN G, DAVID P, ARTZAI P, et al. Automatic red- channel underwater image restoration[J]. Journal of Visual Communication Image Representation, 2015, 26: 132-145. doi: 10.1016/j.jvciy.2014.11.006. FU Xueyang, ZHUANG Peixian, HUANG Yue, et al. A retinex-based enhancing approach for single underwater image[C]. IEEE International Conference on Image Processing (ICIP), Paris, France, 2014: 4572-4576. JAFFE J S. Computer modeling and the design of optimal underwater imaging systems[J]. IEEE Journal of Oceanic Engineering, 1990, 15(2): 101-111. doi: 10.1109/48.50695. 楊愛萍, 鄭佳, 王建, 等. 基于顏色失真去除與暗通道先驗的水下圖像復(fù)原[J]. 電子與信息學報, 2015, 37(11): 2541-2547. doi: 10.11999/JEIT150483. YANG Aiping, ZHENG Jia, WANG Jian, et al. Underwater image restoration based on color cast removal and dark channel prior[J]. Journal of Electronics Information Technology, 2015, 37(11): 2541-2547. doi: 10.11999/ JEIT150483. Gordon H R. Can the lambert-beer law be applied to the diffuse attenuation coefficient of ocean water[J]. Limnology and Oceanography, 1989, 34(8): 1389-1409. doi: 10.4319/lo. 1989.34.8.1389 . MEN Gaofeng, WANG Ying, DUAN Jiangyong, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]. IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 2013: 617-624. WANG J B, HE N, ZHANG L L, et al. Single image dehazing with a physical model and dark channel prior[J]. Neurocomputing, 2015, 149(PB): 718-728. doi: 10.1016/j. neucom.2014.08.005. HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168. ANDERES E. Robust adaptive Wiener filtering[C]. IEEE International Conference on Image Processing(ICIP), Quebec, Canada, 2012: 3081-3084. YANG J and ZHANG Y. Alternating direction algorithms for l1-problems in compressive sensing[J]. SIAM Journal on Scientific Computing, 2011, 33(1): 250-278. doi: 10.1137/ 090777761. SHAN Q, JIA J Y, and AGARWALA A. High-quality motion deblurring from a single image[J]. ACM Transactions on Graphics, 2008, 27(3): 1-10. doi: 10.1145/1360612.1360672. SERIKAWA S and LU H. Underwater image dehazing using joint trilateral filter[J]. Computers Electrical Engineering, 2014, 40(1): 4150. doi: 10.1016/j.compeleceng.2013.10.06. LI Fang, WU Jinyong, WANG Yike, et al. A color cast detection algorithm of robust performance[C]. IEEE International Conference on Advanced Computational Intelligence, Nanjing, China, 2012: 662-664. -
計量
- 文章訪問數(shù): 1503
- HTML全文瀏覽量: 178
- PDF下載量: 401
- 被引次數(shù): 0