一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

一種多模型貝努利粒子濾波機動目標(biāo)跟蹤算法

楊峰 張婉瑩

楊峰, 張婉瑩. 一種多模型貝努利粒子濾波機動目標(biāo)跟蹤算法[J]. 電子與信息學(xué)報, 2017, 39(3): 634-639. doi: 10.11999/JEIT160467
引用本文: 楊峰, 張婉瑩. 一種多模型貝努利粒子濾波機動目標(biāo)跟蹤算法[J]. 電子與信息學(xué)報, 2017, 39(3): 634-639. doi: 10.11999/JEIT160467
YANG Feng, ZHANG Wanying. Multiple Model Bernoulli Particle Filter for Maneuvering Target Tracking[J]. Journal of Electronics & Information Technology, 2017, 39(3): 634-639. doi: 10.11999/JEIT160467
Citation: YANG Feng, ZHANG Wanying. Multiple Model Bernoulli Particle Filter for Maneuvering Target Tracking[J]. Journal of Electronics & Information Technology, 2017, 39(3): 634-639. doi: 10.11999/JEIT160467

一種多模型貝努利粒子濾波機動目標(biāo)跟蹤算法

doi: 10.11999/JEIT160467
基金項目: 

國家自然科學(xué)基金(61135001, 61374159, 61374023),西北工業(yè)大學(xué)研究生創(chuàng)意創(chuàng)新種子基金(Z2016149)

Multiple Model Bernoulli Particle Filter for Maneuvering Target Tracking

Funds: 

The National Natural Science Foundation of China (61135001, 61374159, 61374023), Seed Foundation of Innovation and Creation of Graduate Students in Northwestern Polytechnical University (Z2016149)

  • 摘要: 交互式多模型貝努利粒子濾波器(Interacting Multiple Model Bernoulli Particle Filter, IMMBPF)適用于雜波環(huán)境下的機動目標(biāo)跟蹤。但是IMMBPF將模型信息引入粒子采樣過程中會導(dǎo)致用于逼近當(dāng)前時刻真實狀態(tài)與模型的粒子數(shù)減少,而且每次遞推各模型間的粒子都要進行交互,存在計算量過大的缺點。為提升IMMBPF中單個采樣粒子對于真實目標(biāo)狀態(tài)和模型逼近的有效性,該文提出一種改進的多模型貝努利粒子濾波器(Multiple Model Bernoulli Particle Filter, MMBPF)。預(yù)先選定每一個模型的粒子數(shù),且模型間的粒子不需要進行交互,減少了計算負荷。模型概率由模型似然函數(shù)計算得到,在不改變模型的馬爾科夫性質(zhì)的條件下避免了小概率模型的粒子退化現(xiàn)象。仿真實驗結(jié)果表明,所提出的MMBPF與IMMBPF相比,用較少的粒子數(shù)就可獲得更優(yōu)的跟蹤性能。
  • RISTIC B, VO B T, VO B N, et al. A tutorial on Bernoulli filters: Theory, implementation and applications[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3406-3430. doi: 10.1109/TSP.2013.2257765.
    VO B T, VO B N, HOSEINNEZHAD, et al. Robust multi-Bernoulli filtering [J]. IEEE Selected Topics in Signal Processing, 2013, 7(3): 399-409. doi: 10.1109/JSTSP.2013. 2252325.
    PAPI F, KYOVTOROV V, GIULIANNO R, et al. Bernoulli filter for track-before-detect using MIMO radar[J]. IEEE Signal Processing Letters, 2014, 21(9): 1145-1149. doi: 10.1109/LSP.2014.2325566.
    VO B T, SEE C M, MA N, et al. Multi-sensor joint detection and tracking with the Bernoulli filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1385-1402. doi: 10.1109/TAES.2012.6178069.
    GRAMSTROM K, WILLETT P, and BARSHALOM Y. A Bernoulli filter approach to detection and estimation of hidden Markov models using cluttered observation sequences[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 2015: 3911-3915. doi: 10.1109/ICASSP.2015.7178704.
    BLOM H A P. An efficient filter for abruptly changing systems[C]. IEEE Proceedings of 23th Conference on Decision and Control, Las Vegas, NV, USA, 1984, Vol.23: 656-658. doi: 10.1109/CDC.1984.272089.
    MCGINNITY S and IRWIN G W. Multiple model bootstrap filter for maneuvering target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 1006-1012. doi: 10.1109/7.869522.
    劉貴喜, 高恩克, 范春宇. 改進的交互式多模型粒子濾波跟蹤算法[J]. 電子與信息學(xué)報, 2007, 29(12): 2810-2813.
    LIU Guixi, GAO Enke, and FAN Chunyu. Tracking algorithms based on improved interacting multiple model particle filter[J]. Journal of Electronics Information Technology, 2007, 29(12): 2810-2813.
    BOERS Y and DRIESSEN H. Interacting multiple model particle filter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(5): 344-349. doi: 10.1049/ip-rsn: 20030741.
    DRIESSEN H and BOERS Y. Efficient particle filter for jump Markov nonlinear systems[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(5): 323-326. doi: 10.1049/ ip-rsn:20045075.
    YANG Wei, FU Yaowen, LONG Jianqian, et al. Random finite sets-based joint maneuvering target detection and tracking filter and its implementation[J]. IET Signal Processing, 2012, 6(7): 648-660. doi: 10.1049/iet-spr. 2011.0171.
    DUNNE D and KIRUBARAJAN T. Multiple model multi-Bernoulli filters for maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2679-2692. doi: 10.1109/TAES.2013.6621845.
    YANG Yanbo, ZOU Jie, YANG Feng, et al. An adaptive particle filter based on the mixing probability[C]. IEEE International Congress on Image and Signal Processing (CISP), Chongqing, China, 2012: 1480-1484. doi: 10.1109/ CSIP. 2012.6469724.
    鑒福升, 徐躍民, 陰澤杰. 改進的多模型粒子濾波機動目標(biāo)跟蹤算法[J]. 控制理論與應(yīng)用, 2010, 27(8): 1012-1016.
    JIAN Fusheng, XU Yueming, and YIN Zejie. Enhanced multiple model particle filter for maneuvering target tracking[J]. Control Theory Application, 2010, 27(8): 1012-1016.
  • 加載中
計量
  • 文章訪問數(shù):  1398
  • HTML全文瀏覽量:  209
  • PDF下載量:  480
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-05-09
  • 修回日期:  2016-11-28
  • 刊出日期:  2017-03-19

目錄

    /

    返回文章
    返回