一種多模型貝努利粒子濾波機動目標(biāo)跟蹤算法
doi: 10.11999/JEIT160467
基金項目:
國家自然科學(xué)基金(61135001, 61374159, 61374023),西北工業(yè)大學(xué)研究生創(chuàng)意創(chuàng)新種子基金(Z2016149)
Multiple Model Bernoulli Particle Filter for Maneuvering Target Tracking
Funds:
The National Natural Science Foundation of China (61135001, 61374159, 61374023), Seed Foundation of Innovation and Creation of Graduate Students in Northwestern Polytechnical University (Z2016149)
-
摘要: 交互式多模型貝努利粒子濾波器(Interacting Multiple Model Bernoulli Particle Filter, IMMBPF)適用于雜波環(huán)境下的機動目標(biāo)跟蹤。但是IMMBPF將模型信息引入粒子采樣過程中會導(dǎo)致用于逼近當(dāng)前時刻真實狀態(tài)與模型的粒子數(shù)減少,而且每次遞推各模型間的粒子都要進行交互,存在計算量過大的缺點。為提升IMMBPF中單個采樣粒子對于真實目標(biāo)狀態(tài)和模型逼近的有效性,該文提出一種改進的多模型貝努利粒子濾波器(Multiple Model Bernoulli Particle Filter, MMBPF)。預(yù)先選定每一個模型的粒子數(shù),且模型間的粒子不需要進行交互,減少了計算負荷。模型概率由模型似然函數(shù)計算得到,在不改變模型的馬爾科夫性質(zhì)的條件下避免了小概率模型的粒子退化現(xiàn)象。仿真實驗結(jié)果表明,所提出的MMBPF與IMMBPF相比,用較少的粒子數(shù)就可獲得更優(yōu)的跟蹤性能。
-
關(guān)鍵詞:
- 機動目標(biāo)跟蹤 /
- 貝努利濾波 /
- 粒子濾波 /
- 多模型
Abstract: Interacting Multiple Model Bernoulli Particle Filter (IMMBPF) is suitable for maneuvering target tracking under cluttered environment. However, when model information is introduced into particle sampling process in IMMBPF, it will lead to the number decline of particles which are applied to approaching the real state and model, and the computation load is heavy because of the interacting stage of particles in the recursion. An enhanced Multiple Model Bernoulli Particle Filter (MMBPF) is proposed to improve the effectiveness of single particle to approximate the real target state and model. The number of particles of each model is given in advance, and the posterior probability of each model is updated with the associate likelihood function, which avoids particle degeneracy without distorting the Markov property. Simulation results show that the proposed MMBPF achieves better tracking performance with fewer particles than IMMBPF.-
Key words:
- Maneuvering target tracking /
- Bernoulli filter /
- Particle filter /
- Multiple model
-
RISTIC B, VO B T, VO B N, et al. A tutorial on Bernoulli filters: Theory, implementation and applications[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3406-3430. doi: 10.1109/TSP.2013.2257765. VO B T, VO B N, HOSEINNEZHAD, et al. Robust multi-Bernoulli filtering [J]. IEEE Selected Topics in Signal Processing, 2013, 7(3): 399-409. doi: 10.1109/JSTSP.2013. 2252325. PAPI F, KYOVTOROV V, GIULIANNO R, et al. Bernoulli filter for track-before-detect using MIMO radar[J]. IEEE Signal Processing Letters, 2014, 21(9): 1145-1149. doi: 10.1109/LSP.2014.2325566. VO B T, SEE C M, MA N, et al. Multi-sensor joint detection and tracking with the Bernoulli filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1385-1402. doi: 10.1109/TAES.2012.6178069. GRAMSTROM K, WILLETT P, and BARSHALOM Y. A Bernoulli filter approach to detection and estimation of hidden Markov models using cluttered observation sequences[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 2015: 3911-3915. doi: 10.1109/ICASSP.2015.7178704. BLOM H A P. An efficient filter for abruptly changing systems[C]. IEEE Proceedings of 23th Conference on Decision and Control, Las Vegas, NV, USA, 1984, Vol.23: 656-658. doi: 10.1109/CDC.1984.272089. MCGINNITY S and IRWIN G W. Multiple model bootstrap filter for maneuvering target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 1006-1012. doi: 10.1109/7.869522. 劉貴喜, 高恩克, 范春宇. 改進的交互式多模型粒子濾波跟蹤算法[J]. 電子與信息學(xué)報, 2007, 29(12): 2810-2813. LIU Guixi, GAO Enke, and FAN Chunyu. Tracking algorithms based on improved interacting multiple model particle filter[J]. Journal of Electronics Information Technology, 2007, 29(12): 2810-2813. BOERS Y and DRIESSEN H. Interacting multiple model particle filter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(5): 344-349. doi: 10.1049/ip-rsn: 20030741. DRIESSEN H and BOERS Y. Efficient particle filter for jump Markov nonlinear systems[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(5): 323-326. doi: 10.1049/ ip-rsn:20045075. YANG Wei, FU Yaowen, LONG Jianqian, et al. Random finite sets-based joint maneuvering target detection and tracking filter and its implementation[J]. IET Signal Processing, 2012, 6(7): 648-660. doi: 10.1049/iet-spr. 2011.0171. DUNNE D and KIRUBARAJAN T. Multiple model multi-Bernoulli filters for maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2679-2692. doi: 10.1109/TAES.2013.6621845. YANG Yanbo, ZOU Jie, YANG Feng, et al. An adaptive particle filter based on the mixing probability[C]. IEEE International Congress on Image and Signal Processing (CISP), Chongqing, China, 2012: 1480-1484. doi: 10.1109/ CSIP. 2012.6469724. 鑒福升, 徐躍民, 陰澤杰. 改進的多模型粒子濾波機動目標(biāo)跟蹤算法[J]. 控制理論與應(yīng)用, 2010, 27(8): 1012-1016. JIAN Fusheng, XU Yueming, and YIN Zejie. Enhanced multiple model particle filter for maneuvering target tracking[J]. Control Theory Application, 2010, 27(8): 1012-1016. -
計量
- 文章訪問數(shù): 1398
- HTML全文瀏覽量: 209
- PDF下載量: 480
- 被引次數(shù): 0