增加副瓣抑制機(jī)制的陣列天線波束賦形遺傳算法研究
doi: 10.11999/JEIT160466
-
1.
(中國科學(xué)院微電子研究所 北京 100029) ②(北京郵電大學(xué)電子工程學(xué)院 北京 100876)
Research on Genetic Algorithm of Antenna Arrays Beam Shaping with Side Lobe Suppression
-
1.
ZHENG Zhanqi① YAN Yuepeng① ZHANG Lijun① WANG Yuhao① ZHANG Jinling② MU Fuqi
-
摘要: 基于遺傳算法的激勵(lì)優(yōu)化算法是求解陣列天線波束賦形問題時(shí)常用的激勵(lì)求解算法。傳統(tǒng)遺傳算法在優(yōu)化陣列天線激勵(lì)時(shí),對(duì)陣元天線方向圖矢量疊加獲得陣列天線合成方向圖后,與目標(biāo)方向圖做相似度判斷,經(jīng)過多次運(yùn)算獲得滿足設(shè)計(jì)要求的激勵(lì)值。然而算法中通常不關(guān)注賦形結(jié)果的副瓣抑制,導(dǎo)致陣列天線波束賦形結(jié)果副瓣抑制效果不理想。該文提出一種基于一組低副瓣波束線性疊加的波束合成機(jī)制,將合成方向圖與目標(biāo)方向圖做相似對(duì)比,結(jié)合遺傳算法的優(yōu)化求解方法,最終獲得與目標(biāo)方向圖匹配的合成方向圖,且合成方向圖具有高副瓣抑制的特性。以一款16陣元 波段微帶偶極子線性陣列天線為例,該文提出的具有副瓣抑制機(jī)制的遺傳算法求得的賦形波束獲得了-27.5 的副瓣抑制效果,遠(yuǎn)遠(yuǎn)好于傳統(tǒng)遺傳算法求得的賦形波束-19 的副瓣抑制。Abstract: Excitation optimization algorithm based on Genetic Algorithm (GA) is mainly used to solve the excitation problems of array antenna beam shaping. When optimizing the excitation of array antenna by traditional genetic algorithm, the beam of array antenna is synthesized by radiation shape of elements in antenna array, and then the results will be compared with the target pattern. After several operations, the excitation will meet the deign requirements. However, in traditional genetic algorithm, neglected suppression of side lobe leads to an unsatisfactory high level side lobe. In this paper, a new method of beam synthesizing by peak beam of array antenna is proposed. By comparing the shape of synthesized beam with target beam and combining with traditional GA, the synthesized beam matching the target beam with low side lobe will be obtained. Taking a 16 elements X band micro-trip dipole linear array antenna as an example, the results of simulation show that array antenna has high level side lobe suppression at about -27.5 dBc using the method proposed in this paper, which is much better than -19 dBc side lobe suppression using traditional GA.
-
Key words:
- Antenna arrays /
- Genetic Algorithm (GA) /
- Side lobe suppression
-
MILIJI? M, NEI? A D, and MILOVANOVI? B. Design, realization, and measurements of a corner reflector printed antenna array with cosecant squared-shaped beam pattern[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 421-424. doi: 10.1109/LAWP.2015.2449257. HE Muxin, HAO Zhangcheng, and FAN Kuikui. A planar millimeter-wave antenna with a cosecant squared pattern[C]. 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 2015: 1-3. SCATTONE F, ETTORRE M, SAULEAU R, et al. Generation of a cosecant-squared radiation pattern with a supersaturate-like leaky-wave antenna[C]. 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 2015: 1-4. MILIJI? M, NEI? A D, MILOVANOVI? B, et al. Wideband printed antenna array in corner reflector with cosecant square-shaped beam pattern[C]. 2014 22nd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 2014: 780-783. 趙菲, 齊會(huì)穎, 邱磊, 等. 自適應(yīng)動(dòng)態(tài)Meta粒子群優(yōu)化算法綜合多方向圖共形陣列[J]. 電子與信息學(xué)報(bào), 2012, 34(6): 1476-1482. doi: 10.3724/SP.J.1146.2011.01187. ZHAO Fei, QI Huiying, QIU Lei, et al. Adaptive dynamic meta particle swarm optimization algorithm synthesizing multiple-pattern conformal array[J]. Journal of Electronics Information Technology, 2012, 34(6): 1476-1482. doi: 10.3724/SP.J.1146.2011.01187. ABDOLAHI M, ASKARI G, SADEGHI H M, et al. A new microstrip array antenna with cosecant-squared beam shaping as a radiating column for SSR[C]. 2014 22nd Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2014: 1781-1785. WANG Peng and YAO Zhiwen. Wave beam control design for VM-based phased array antenna[C]. Proceedings of 2011 International Conference on Electronics and Optoelectronics, Dalian, China, 2011: V2-22-V2-25. OLIVERI G, VIANI F, ANSELMI N, et al. Synthesis of multilayer WAIM coatings for planar-phased arrays within the system-by-design framework[J]. IEEE Transactions on Antennas and Propagation, 2015, Vol. 63: 2482-2496. TANHA M, BRENNAN P, ASH M, et al. Phased array antenna for avalanche FMCW radar[C]. Antennas and Propagation Conference (LAPC), Loughborough, England, 2013: 51-55. TSUTSUMI H, KUWAHARA Y, and KAMO H. Design of the series fed microstrip patch planar array antenna by the para to genetic algorithm[R]. 2015 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 2015: 1854-1855. CIORNEI I and KYRIAKIDES E. Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(1): 234-245. doi: 10.1109/TSMCB. 2011.2164245. CHARI I, KOUBA A, BENNACEUR H, et al. A hybrid ACO-GA algorithm for robot path planning[C]. 2012 IEEE Congress on Evolutionary Computation, Brisbane, Australia, 2012: 1-8. WEI Juan and WANG Ping. Optimization of fuzzy rule based on adaptive genetic algorithm and ant colony algorithm[C]. 2012 Fourth International Conference on Computational and Information Sciences, Chengdu, China, 2010: 359-362. KUNDUKULAM S and BEENAMOLE K. Design of a linear array antenna for shaped beam using genetic algorithm[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2008, 18(5): 410-416. UESAKA T and ARAI H. Design of cosecant squared beam collinear array using genetic algorithm[C]. 2013 IEEE International Workshop on Electromagnetics, Applications and Student Innovation Competition, Kowloon, Hong Kong, China, 2013: 74-75. DEHGHANI M, KARBALAEE Z, and MAHZON M. Design of a wide band antenna array with cosecant square pattern using genetic algorithm[C]. 2012 20th Telecommunications Forum (TELFOR), Belgrade, Serbia, 2012: 564-567. -
計(jì)量
- 文章訪問數(shù): 2009
- HTML全文瀏覽量: 198
- PDF下載量: 447
- 被引次數(shù): 0