基于MODPSO算法的FPRM電路多約束極性?xún)?yōu)化方法
doi: 10.11999/JEIT160458
-
2.
(寧波大學(xué)電路與系統(tǒng)研究所 寧波 315211) ②(寧波大學(xué)科學(xué)技術(shù)學(xué)院 寧波 315212)
國(guó)家自然科學(xué)基金(61306041, 61234002),十二五浙江省高校重點(diǎn)學(xué)科計(jì)算機(jī)應(yīng)用技術(shù),浙江省教育廳科研項(xiàng)目(Y201326770),寧波市自然科學(xué)基金(2014A610069,2015A610107)
Multi-constrained Polarity Optimization of Large-scale FPRM Circuits Based on Multi-objective Discrete Particle Swarm Optimization
-
2.
(Institute of Circuits and Systems, Ningbo University, Ningbo 315211, China)
The National Natural Science Foundation of China (61306041, 61234002), The Twelfth Five-Year Plan of Zhejiang Province Key Discipline (Computer Application Technology), The Scientific Research Fund of Zhejiang Provincial Education Department (Y201326770), The Ningbo Natural Science Foundation (2014A610069, 2015A610107)
-
摘要: 為求解較大規(guī)模FPRM邏輯電路中多約束條件下的極性?xún)?yōu)化問(wèn)題,該文提出一種基于多目標(biāo)離散粒子群優(yōu)化(Multi-Objective Discrete Particle Swarm Optimization, MODPSO)算法的求解方法。首先針對(duì)FPRM電路極性設(shè)計(jì)需要滿足延時(shí)短、面積小的多約束要求,構(gòu)建了多目標(biāo)決策模型。然后結(jié)合極性轉(zhuǎn)換算法和MODPSO算法,對(duì)電路進(jìn)行最優(yōu)極性搜索,以獲取電路延時(shí)和面積的Pareto最優(yōu)解集。最后利用17個(gè)MCNC Benchmark電路進(jìn)行測(cè)試,并將MODPSO算法與DPSO算法、NSGA-II算法進(jìn)行實(shí)驗(yàn)對(duì)比,結(jié)果驗(yàn)證了算法的有效性。
-
關(guān)鍵詞:
- FPRM邏輯電路 /
- 延時(shí)與面積優(yōu)化 /
- 極性搜索 /
- Pareto /
- 多目標(biāo)離散粒子群算法
Abstract: For multi-constrained polarity optimization of large-scale FPRM circuits, a Multi-Objective Discrete Particle Swarm Optimization (MODPSO) algorithm is proposed. Firstly, the multi-objective decision model is established according to the delay-area trade-off of large-scale FPRM circuits. Secondly, combined with tabular technique and MODPSO, the best polarities of delay and area are searched for large-scale FPRM circuits, to obtain the Pareto optimal set for delay and area. Finally, the algorithm MODPSO is compared with the algorithm DPSO and NSGA-II on MCNC Benchmarks with PLA format, and the results verify the effectiveness of the MODPSO. -
MONREIRO C, TAKAHASHI Y, and SEKINE T. Low- power secure S-box circuit using charge-sharing symmetric adiabatic logic for advanced encryption standard hardware design[J]. IET Circuits, Devices Systems, 2015, 9(5): 362-369. 王倫耀, 夏銀水, 陳偕雄. 邏輯函數(shù)的雙邏輯綜合與優(yōu)化[J]. 計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào), 2012, 24(7): 961-967. WANG Lunyao, XIA Yinshui, and CHEN Xiexiong. Logic synthesis and optimization based on dual logic[J]. Journal of Computer-Aided Design Computer Graphics, 2012, 24(7): 961-967. 卜登立, 江建慧. 基于混合多值離散粒子群優(yōu)化的混合極性 Reed-Muller 最小化算法[J]. 電子與信息學(xué)報(bào), 2013, 35(2): 361-367. doi: 10.3724/SP.J.1146.2012.00790. BU Dengli and JIANG Jianhui. Hybrid multi-valued discrete particle Swarm optimization algorithm for mixed-polarity Reed-Muller minimization[J]. Journal of Electronics Information Technology, 2013, 35(2): 361-367. doi: 10.3724/ SP.J.1146.2012.00790. 王振海, 汪鵬君, 俞海珍, 等. 基于PSO算法的FPRM電路延時(shí)和面積優(yōu)化[J]. 電路與系統(tǒng)學(xué)報(bào), 2012, 17(5): 75-80. WANG Zhenhai, WANG Pengjun, YU Haizhen, et al. Delay and area optimization for FPRM circuits based on PSO algorithm[J]. Journal of Circuits and Systems, 2012, 17(5): 75-80. WANG Pengjun, LI Kangping, and ZHANG Huihong. PMGA and its application in area and power optimization for ternary FPRM circuit[J]. Journal of Semiconductors, 2016, 37(1): 015007. DAS A and PRADHAN S N. Thermal aware FPRM based AND-XOR network synthesis of logic circuits[C]. IEEE 2nd International Conference on Recent Trends in Information System(ReTIS). IEEE, Kolkata, India, 2015: 497-502. doi: 10.1109/ReTIS.2015.7232930. 姜興龍, 梁廣, 劉會(huì)杰, 等. 一種新型的低軌存儲(chǔ)轉(zhuǎn)發(fā)通信星座設(shè)計(jì)方法[J]. 電子與信息學(xué)報(bào), 2014, 36(3): 676-682. doi: 10.3724/SP.J.1146.2013.00551. JIANG Xinglong, LIANG Guang, LIU Huijie, et al. A new design method of store and forward LEO communication satellite constellation[J]. Journal of Electronics Information Technology, 2014, 36(3): 676-682. doi: 10.3724/ SP.J.1146.2013.00551. ESFAHANI I J, YOO C K, KALOGIROU SOTERIS A, et al. An optimization algorithm-based pinch analysis and GA for an off-grid batteryless photovoltaic-powered reverse osmosis desalination system[J]. Renewable Energy, 2016, 91: 233-248. SRIVASTAV A and AGRAWAL S. Multi-objective optimization of hybrid backorder inventory model[J]. Expert Systems with Applications, 2016, 51: 76-84. MARTINEZ-VARGAS A, DOMINGUEZ-GUERRERO J, ANDRADE G, et al. Application of NSGA-II algorithm to the spectrum assignment problem in spectrum sharing networks[J]. Applied Soft Computing, 2016, 39: 188-198. YUAN Y, XU H, WANG B, et al. A new dominance relation-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(1): 16-37. HOAI BACH NGUYEN, XUE Bing, LIU L, et al. New mechanism for archive maintenance in PSO-based multi- objective feature selection[J]. Soft Computing, 2016: 1-20. doi: 10.1007/s00500-016-2128-8. JASSANI B A Al, URQUHART N, and ALMAINI A E A. Manipulation and optimization techniques for Boolean logic[J]. IET Computers and Digital Techniques, 2010, 4(3): 227-239. 汪鵬君, 王振海, 陳耀武, 等. 固定極性Reed-Muller電路最優(yōu)延時(shí)極性搜索[J]. 浙江大學(xué)學(xué)報(bào): 工學(xué)版, 2013, 47(2): 361-366. doi: 10.3785/j.issn.1008-973X.2013.02.026. WANG Pengjun, WANG Zhenhai, CHEN Yaowu, et al. Searching the best polarity for fixed polarity Reed-Muller circuits based on delay model[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(2): 361-366. doi: 10.3785/j.issn.1008-973X. 2013.02.026. CORTADELLA J. Timing-driven logic bi-decomposition[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2003, 22(6): 675-685. AMINBAKHSH S and SONMEZ R. Discrete particle swarm optimization method for the large-scale discrete timecost trade-off problem[J]. Expert Systems with Applications, 2016, 51: 177-185. -
計(jì)量
- 文章訪問(wèn)數(shù): 1461
- HTML全文瀏覽量: 189
- PDF下載量: 521
- 被引次數(shù): 0