Femtocell雙層網(wǎng)絡(luò)中基于Q-learning的子信道分配方案
doi: 10.11999/JEIT160453
-
1.
(北京電子科技職業(yè)學(xué)院電信工程學(xué)院 北京 100176) ②(北京郵電大學(xué)信息與通信工程學(xué)院 北京 100876)
北京市教育委員會(huì)科技計(jì)劃一般項(xiàng)目(KM201710858003)
Subchannel Allocation Scheme for Two-tire Femtocell Networks Based on Q-learning
-
1.
(School of Telecommunication Engineering, Beijing Polytechnic, Beijing 100176, China)
-
2.
(School of Information and Communication Engineering, Beijing University of Posts and Telecommunications,Beijing 100876, China)
The Science and Technology Projects of Beijing Municipal Education Commission(KM201710858003)
-
摘要: 在Femtocell家庭基站(Femtocell Base Station, FBS)組成的異構(gòu)網(wǎng)絡(luò)中,為提升網(wǎng)絡(luò)的頻譜效率,F(xiàn)BS與Macrocell宏基站(Macrocell Base Station, MBS)一般要求是同頻部署,然而同頻部署會(huì)產(chǎn)生同信道干擾。為了實(shí)現(xiàn)FBS的大規(guī)模部署,降低網(wǎng)絡(luò)同信道干擾影響變得尤為重要。該文提出一種基于Q-learning的子信道分配方案,既保證大量部署的FBS不會(huì)對(duì)MBS帶來過高的跨層干擾,同時(shí)也降低了FBS之間的同層干擾。同時(shí)針對(duì)FBS稀疏部署和密集部署的場景,分別進(jìn)行了算法的仿真驗(yàn)證,其仿真結(jié)果表明該算法降低了干擾,驗(yàn)證了理論的正確性。
-
關(guān)鍵詞:
- Femtocell /
- 雙層網(wǎng)絡(luò) /
- Q-learning /
- 子信道分配
Abstract: In order to improve the spectrum efficiency in the Femtocell home Base Station (FBS) heterogeneous network, FBS and Macrocell Base Station (MBS) are usually deployed with the same frequency. However, the same frequency deployment will inevitably lead to larger co-channel interference. In order to achieve the large-scale deployment of FBS, reducing the interference of the network with the channel is particularly important. In this paper, a sub channel allocation scheme is propsed based on Q-learning. It can ensure that FBS will not bring high cross-layer interference of MBS, while it reduces the same layer interference between two FBS. The simulation of the algorithm of FBS sparse deployment and dense deployment situation are performed, respectively. Simulation results show that this algorithm reduces the same layer interference and verifies the correctness of the theory.-
Key words:
- Femtocell /
- Two-tire networks /
- Q-learning /
- Subchannel allocation
-
CHEN W T. Analytic estimation for uplink capacity reduction due to co-channel interference in LTE networks[J]. Wireless Networks, 2014, 21(6): 1775-1782. doi: 10.1007/ s11276-014-0883-y. ALADE T, ZHU H, and WANG J. Uplink co-channel interference analysis and cancellation in femtocell based distributed antenna system[C]. IEEE International Conference on Communication (ICC) 2010, Cape Town, South Africa, 2010: 1-5. doi: 10.1109/ICC.2010.5501848. MOHSEN M and MAJID G. Uplink scheduling in wireless networks with successive interference cancellation[J]. IEEE Transactions on Mobile Computing, 2014, 13(5): 1132-1144. doi: 10.1109/TMC.2013.56. VIKRAM C and JEFFREY J A. Spectrum allocation in tiered cellular networks[J]. IEEE Transactions on Communications, 2009, 57(10): 3059-3068. doi: 10.1109/ TCOMM.2009.10.080529. TSIROPOU E E, VAMVAKAS P, PAPAVASSILIOU S, et al Combined power and rate allocation in self-optimized multi-service two-tier femtocell networks[J]. Computer Communications, 2015, 72(12): 38-48. doi: 10.1016/j. comcom.2015.05.012. 杜曉玉, 孫力娟, 郭劍, 等. 異構(gòu)無線傳感器網(wǎng)絡(luò)覆蓋優(yōu)化算法[J]. 電子與信息學(xué)報(bào), 2014, 36(3): 696-702. doi: 10.3724/ SP.J.1146.2013.00730. DU Xiaoyu, SUN Lijuan, GUO Jian, et al. Coverage optimization algorithm for heterogeneous WSNs[J]. Journal of Electronics Information Technology, 2014, 36(3): 696-702. doi: 10.3724/SP.J.1146.2013.00730. LI Hongjia, XU Xiaodong, HU Dan, et al. Clustering strategy based on graph method and power control for frequency resource management in femtocell and MBS overlaid system[J]. Journal of Communications and Networks, 2011, 13(6): 664-677. doi: 10.1109/JCN.2011.6157483. HAN Bin, WANG Wenbo, LI Yong, et al. Investigation of interference margin for the co-existence of MBS and femtocell in orthogonal frequency division multiple access systems[J]. IEEE Systems Journal, 2013, 7(1): 59-67. doi: 10.1109/ JSYST.2012.2223536. GUVENC I, JEONG M R, WATANABE F J, et al. A hybrid frequency assignment for femtocells and coverage area analysis for co-channel operation[J]. IEEE Communications Letters, 2008, 12(12): 880-882. doi: 10.1109/LCOMM.2008. 081273. ZHENG K, WANG Y, LIN C, et al. Graph-based interference coordination scheme in orthogonal frequency-division multiplexing access femtocell networks[J]. IET Communications, 2011, 5(17): 2533-2541. doi: 10.1049/ iet-com.2011.0134. PARK S S, SEO W H, KIM Y J, et al. Beam subset selection strategy for interference reduction in two-tier femtocell networks[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3440-3449. doi: 10.1109/ TWC.2010.092410.091171. 張海波, 穆立雄, 陳善學(xué), 等. OFDMA毫微微小區(qū)雙層網(wǎng)絡(luò)中基于分組的資源分配[J]. 電子與信息學(xué)報(bào),2016,38(2): 262-268. doi: 10.11999/JEIT150699. ZHANG Haibo, MU Lixiong, CHEN Shanxue, et al. A cluster-based resource allocation in a two-tier OFDMA femtocell networks[J]. Journal of Electronics Information Technology, 2016, 38(2): 262-268. doi: 10.11999/ JEIT150699. CHANG Chihwen. An interference-avoidance code assignment strategy for the hierarchical two-dimensional- spread MC-DS-CDMA system: a prototype of cognitive radio femtocell system[J]. IEEE Transactions on Vehicular Technology, 2012, 61(1): 166-184. doi: 10.1109/TVT.2011. 2173808. KANG Xin, LIANG Yingchang, and GARG H K. Distributed power control for spectrum-sharing femtocell networks using stackelberg game[C]. 2011 IEEE International Conference on Communications (ICC), Kyoto, Japan, 2011: 1-5. doi: 10.1109/icc.2011.5962650. AHMED M and YOON S G. Dynamic access and power control scheme for interference mitigation in femtocell networks[J]. KSII Transactions on Internet and Information Systems (TIIS), 2015, 9(11): 4331-4346. dio: 10.3837/tiis. 2015.11.004. JIN Fan, ZHANG Rong, and HANZO L. Fractional frequency reuse aided twin-layer femtocell networks: Analysis, aesign and optimization[J]. IEEE Transactions on Communications, 2013, 61(5): 2074-2085. doi: 10.1109/ TCOMM.2013.022713.120340. JIN Fan, ZHANG Rong, and HANZO L. Frequency- swapping aided femtocells in twin-layer cellular networks relying on fractional frequency reuse[C]. 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 2012: 3097-3101. doi: 10.1109/WCNC.2012. 6214337. SALATI A H, NASIRI-KENARI M, and SADEGHI P. Distributed subband, rate and power allocation in OFDMA based two-tier femtocell networks using fractional frequency reuse[C]. 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 2012: 2626-2630. doi: 10.1109/WCNC.2012.6214243. VALCARCE A, LUCAS M, and LOPEZ-PEREZ D. In-cabin downlink cell planning with fractional frequency reuse[C]. 18th European Wireless Conference European Wireless, Poznan, Poland, 2012: 1-5. WU Dapeng and NEGI R. Effective capacity: A wireless link model for support of quality of service[J]. IEEE Transactions on Wireless Communications, 2003, 2(4): 630-643. doi: 11.1109/TWC.2003.814353. WATKINS C and DAYAN P. Technical note: Q-Learning [J]. Machine Learning, 1992, 8(3/4): 279-292. dio: 10.1023/A: 1022676722315. -
計(jì)量
- 文章訪問數(shù): 994
- HTML全文瀏覽量: 87
- PDF下載量: 501
- 被引次數(shù): 0