一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于LLMNR協(xié)議與證據(jù)理論的本地網(wǎng)絡(luò)CC信息分享機(jī)制

郭曉軍 程光 胡一非 戴冕

郭曉軍, 程光, 胡一非, 戴冕. 基于LLMNR協(xié)議與證據(jù)理論的本地網(wǎng)絡(luò)CC信息分享機(jī)制[J]. 電子與信息學(xué)報(bào), 2017, 39(3): 525-531. doi: 10.11999/JEIT160410
引用本文: 郭曉軍, 程光, 胡一非, 戴冕. 基于LLMNR協(xié)議與證據(jù)理論的本地網(wǎng)絡(luò)CC信息分享機(jī)制[J]. 電子與信息學(xué)報(bào), 2017, 39(3): 525-531. doi: 10.11999/JEIT160410
GUO Xiaojun, CHENG Guang, HU Yifei, Dai Mian. CC Information Sharing Scheme in Local Network Based on LLMNR Protocol and Evidential Theory[J]. Journal of Electronics & Information Technology, 2017, 39(3): 525-531. doi: 10.11999/JEIT160410
Citation: GUO Xiaojun, CHENG Guang, HU Yifei, Dai Mian. CC Information Sharing Scheme in Local Network Based on LLMNR Protocol and Evidential Theory[J]. Journal of Electronics & Information Technology, 2017, 39(3): 525-531. doi: 10.11999/JEIT160410

基于LLMNR協(xié)議與證據(jù)理論的本地網(wǎng)絡(luò)CC信息分享機(jī)制

doi: 10.11999/JEIT160410
基金項(xiàng)目: 

國家863計(jì)劃項(xiàng)目(2015AA015603),江蘇省未來網(wǎng)絡(luò)創(chuàng)新研究院未來網(wǎng)絡(luò)前瞻性研究項(xiàng)目(BY2013095-5-03),江蘇省六大人才高峰高層次人才項(xiàng)目(2011-DZ024),江蘇省普通高校研究生科研創(chuàng)新計(jì)劃資助項(xiàng)目(KYLX_0141)

CC Information Sharing Scheme in Local Network Based on LLMNR Protocol and Evidential Theory

Funds: 

The National 863 Program of China (2015AA 015603), Jiangsu Future Net-works Innovation Institute: Prospective Research Project on Future Networks (BY2013095- 5-03), Six Talent Peaks of High Level Talents Project of Jiangsu Province (2011-DZ024), The Scientific Research Innovation Projects for General University Graduate of Jiangsu Province (KYLX_0141)

  • 摘要: 僵尸主機(jī)(Bot)安全隱蔽地獲取控制命令信息是保證僵尸網(wǎng)絡(luò)能夠正常工作的前提。該文針對(duì)本地網(wǎng)絡(luò)同類型Bot隱蔽地獲取控制命令信息問題,提出一種基于LLMNR協(xié)議與證據(jù)理論的命令控制信息分享機(jī)制,首先定義了開機(jī)時(shí)間比和CPU利用率兩個(gè)評(píng)價(jià)Bot性能的指標(biāo)。其次本地網(wǎng)絡(luò)中多個(gè)同類Bot間利用LLMNR Query包通告各自兩個(gè)指標(biāo)值,并利用D-S證據(jù)理論選舉出僵尸主機(jī)臨時(shí)代表BTL(Bot Temporary Leader)。接著僅允許BTL與命令控制服務(wù)器進(jìn)行通信并獲取命令控制信息。最后,BTL通過LLMNR Query包將命令控制信息分發(fā)給其它Bot。實(shí)驗(yàn)結(jié)果表明,該機(jī)制能使多個(gè)同類Bot完成命令控制信息的共享,選舉算法能根據(jù)Bot評(píng)價(jià)指標(biāo)實(shí)時(shí)有效選舉出BTL,在網(wǎng)絡(luò)流量較大時(shí)仍呈現(xiàn)較強(qiáng)的魯棒性,且選舉過程產(chǎn)生流量也具有較好隱蔽性。
  • 王天佐, 王懷民, 劉波, 等. 僵尸網(wǎng)絡(luò)中的關(guān)鍵問題[J]. 計(jì)算機(jī)學(xué)報(bào), 2012, 35(6): 1192-1208. doi: 10.3724/SP.J.1016.2012. 01192.
    WANG Tianzuo, WANG Huaimin, LIU Bo, et al. Some critical problems of Botnets[J]. Chinese Journal of Computers, 2012, 35(6): 1192-1208. doi: 10.3724/SP.J.1016.2012.01192.
    CHEN P, DESMET L, and HUYGENS C. A study on advanced persistent threats[C]. Proceedings of the 15th IFIP TC 6/TC 11 International Conference on Communications and Multimedia Security, Aveiro, Portugal, 2014: 63-72. doi: 10.1007/978-3-662-44885-4_5.
    JUELS A and TING F Y. Sherlock Holmes and the case of the advanced persistent threat[C]. Proceedings of the 5th USENIX Conference on Large-Scale Exploits and Emergent Threats, San Jose, CA, USA, 2012: 2-6.
    RAFAEL A R G, GABRIEL M F, and PEDRO G T. Survey and taxonomy of botnet research through life-cycle[J]. ACM Computing Surveys, 2013, 45(4): 1-33. doi: 10.1145/2501654. 2501659.
    GU G F, ZHANG J, and LEE W. BotSniffer: detecting botnet command and control channels in network traffic[C]. Proceedings of the 15th Annual Network and Distributed System Security Symposium, San Diego, CA, USA, 2008: 10-22.
    STONE-GROSS B, COVA M, CAVALLARO L, et al. Your botnet is my botnet: Analysis of a botnet takeover[C]. Proceedings of the 16th ACM Conference on Computer and Communications Security, Hyatt Regency Chicago, IL, USA, 2009: 635-647. doi: 10.1145/1653662.1653738.
    PORRAS P, SAIDI H, and YEGNESWARAN V. An analysis of the iKee.B iphone botnet[C]. Proceedings of the 2nd International ICST Conference on Security and Privacy in Mobile Information and Communication Systems, Catania, Sicily, Italy, 2010: 141-152. doi: 10.1007/978-3-642-17502- 2_12.
    CHO C Y, CABALLERO J, GRIER C, et al. Insights from the inside: A view of botnet management from infiltration[C]. Proceedings of the USENIX Workshop on Large-Scale Exploits and Emergent Threats, San Jose, CA, USA, 2010: 120-132.
    BILGE L, BALZAROTTI D, ROBERTSON W, et al. Disclosure: detecting botnet command and control servers through large-scale netflow analysis[C]. Proceedings of the 28th Annual Computer Security Applications Conference, Orlando, FL, USA, 2012: 129-138. doi: 10.1145/2420950. 2420969.
    ANDRIESSE D, ROSSOW C, STONE-GROSS B, et al. Highly resilient peer-to-peer botnets are here: an analysis of Gameover Zeus[C]. Proceedings of the 8th International Conference on Malicious and Unwanted Software: The Americas, Fajardo, Portugal, 2013: 116-123. doi: 10.1109/ MALWARE.2013.6703693.
    RAHIMIAN A, ZIARATI R, PREDA S, et al. On the reverse engineering of the citadel botnet[C]. Proceedings of the 6th International Symposium Foundations and Practice of Security, La Rochelle, France, 2014: 408-425. doi: 10.1007/ 978-3-319-05302-8_25.
    GAN C, CETIN O, and VAN E M. An empirical analysis of ZeuS CC lifetime[C]. Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, Singapore, 2015: 97-108. doi: 10.1145/2714576. 2714579.
    CHOI H, LEE H, LEE H, et al. Botnet detection by monitoring group activities in DNS traffic[C]. Proceedings of the 7th IEEE International Conference on Computer and Information Technology, Aizu-Wakamatsu, Fukushima, Japan, 2007: 715-720. doi: 10.1109/CIT.2007.90.
    STRAYER W T, LAPSELY D, WALSH R, et al. Botnet Detection Based on Network Behavior[M]. New York, USA, Springer Science Business Media, 2008: 1-24. doi: 10.1007 /978-0-387-68768-1_1.
    SAAD S, TRAORE I, GHORBANI A, et al. Detecting P2P botnets through network behavior analysis and machine learning[C]. Proceedings of the 9th Annual International Conference on Privacy, Security and Trust, Montreal, Quebec, Canada, 2011: 174-180. doi: 10.1109/PST.2011.5971980.
    ZHAO D, TRAORE I, SAYED B, et al. Botnet detection based on traffic behavior analysis and flow intervals[J]. Computers Security, 2013, 39(4): 2-16. doi: 10.1016/j.cose. 2013.04.007.
    DIETRICH C J, ROSSOW C, and POHLMANN N. CoCoSpot: clustering and recognizing botnet command and control channels using traffic analysis[J]. Computer Networks, 2013, 57(2): 475-486. doi: 10.1016/j.comnet.2012.06.019.
    JIANG H and SHAO X. Detecting P2P botnets by discovering flow dependency in CC traffic[J]. Peer-to-Peer Networking and Applications, 2014, 7(4): 320-331. doi: 10.1007/s12083-012-0150-x.
    BILGE L, SEN S, BALZAROTTI D, et al. EXPOSURE: a passive DNS analysis service to detect and report malicious domains[J]. ACM Transactions on Information and System Security, 2014, 16(4): 289-296. doi: 10.1145/2584679.
    CHANG W, MOHAISEN A, WANG A, et al. Measuring botnets in the wild: Some new trends[C]. Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, Singapore, 2015: 645-650. doi: 10.1145/2714576.2714637.
    LEVON E, BERNARD A, and DAVE T. Link-Local Multicast Name Resolution (LLMNR)[OL]. https://tools.ietf. org /html/rfc4795. 2015.
    CAVALCANTE A P A, BOUDY J, ISTRATE D, et al. A dynamic evidential network for fall detection[J]. IEEE Journal of Biomedical and Health Informatics, 2014, 18(4): 1103-1113. doi: 10.1109/JBHI.2013.2283055.
    Guo X J, Cheng G, Pan W B, et al. A novel search engine- based method for discovering command and control server[C]. Proceedings of the 15th International Conference On Algorithms and Architectures for Parallel Processing. Zhangjiajie, China, 2015: 311-322. doi: 10.1007/978-3-319- 27137-8_24.
    YIN T, ZHANG Y, and LI S. DR-SNBot: a social network- based botnet with Strong Destroy-Resistance[C]. Proceedings of the 9th IEEE International Conference on Networking, Architecture, and Storage, Tianjin, China, 2014: 191-199. doi: 10.1109/NAS.2014.37.
    NAJAM M, YOUNIS U, and RASOOL R. Speculative parallel pattern matching using stride-k DFA for deep packet inspection[J]. Journal of Network and Computer Applications, 2015, 54: 78-87. doi: 10.1016/j.jnca.2015.04.013.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1427
  • HTML全文瀏覽量:  156
  • PDF下載量:  479
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-04-25
  • 修回日期:  2016-09-09
  • 刊出日期:  2017-03-19

目錄

    /

    返回文章
    返回