一種用于毫米波行波管的微帶預(yù)失真電路
doi: 10.11999/JEIT160395
-
2.
(中國科學(xué)院電子學(xué)研究所 北京 100190) ②(中國科學(xué)院大學(xué) 北京 100039)
國家科技重大專項(2012ZX01007004001),國家自然科學(xué)基金(61401427)
Micro-strip Predistortion Circuit for Millimeter-wave Travelling Wave Tube
-
2.
(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
The National Science and Technology Major Project (2012ZX01007004001), The National Natural Science Foundation of China (61401427)
-
摘要: 隨著通信技術(shù)的發(fā)展,行波管預(yù)失真電路的研究變得越來越重要。該文針對基于肖特基二極管的非線性發(fā)生器,首次分析了二極管SPICE(Simulation Program with Integrated Circuit Emphasis)模型參數(shù)中零偏壓結(jié)電容和串聯(lián)電阻對預(yù)失真擴(kuò)張曲線的影響。對目前的微帶預(yù)失真電路工作在K波段以下,絕對或相對帶寬一般不超過1.8 GHz和4%,需在輸入及輸出端加隔離器等不足,基于ADS(Advanced Design System)軟件設(shè)計并加工了一種用于中心頻率30 GHz,絕對和相對帶寬為2 GHz和6.67% 的毫米波行波管的微帶預(yù)失真電路。分別測試行波管和級聯(lián)線性化器后的行波管,29 GHz, 30 GHz和31 GHz的增益和相位壓縮量分別可以從7.5 dB和40 , 7.3 dB和50 , 7.1 dB和59改善到3.8 dB和10 , 3.7 dB和12 , 2.4 dB和15以內(nèi)。雙音測試結(jié)果表明,為了達(dá)到通信中載波與三階交叉調(diào)制分量抑制比(C/IM3)25 dBc的要求,單獨(dú)行波管在29 GHz, 30 GHz和31 GHz時需分別回退17 dB, 18 dB和18 dB,而加入線性化器后的行波管,只需分別回退12 dB, 9 dB和8 dB,也即加線性化器可改善5 dB, 9 dB和10 dB,極大地提升了行波管的線性度,具有重要工程應(yīng)用價值。
-
關(guān)鍵詞:
- 行波管 /
- 肖特基二極管 /
- 預(yù)失真器 /
- 增益和相位擴(kuò)張 /
- 載波與三階交叉調(diào)制分量比
Abstract: With the development of communication technology, investigating predistortion circuit for Travelling Wave Tube (TWT) becomes more and more important. This paper analyzes the principle of nonlinearity generator based on the schottky diodes and the effects of the zero bias junction capacitor and series resistor of the diode Simulation Program with Integrated Circuit Emphasis (SPICE) model on the expansions of the circuit for the first time. The conventional micro-strip predistortion circuits, whose absolute or relative bandwidth are less than 1.8 GHz and 4%, work at below K band, and need isolators to match the input and output ports. Based on the Advanced Design System (ADS) software, it is designed that a micro-strip predistortion circuit for millimeter wave band TWT at center frequency 30 GHz, absolute bandwidth 2 GHz, and relative bandwidth 6.67%. The results of experiments show that the compressions variations of gain and phase are from 7.5 dB and 40, 7.3 dB and 50, 7.1 dB and 59to less than 3.8 dB and 10, 3.7 dB and 12, 2.4 dB and 15 for the TWT without and with the linearizer at 29 GHz, 30 GHz and 31 GHz respectively. The two tones test results show that the Input Power Back Off (IPBO) are 17 dB, 18 dB and 18 dB for the TWT, but 12 dB, 9 dB, and 8 dB for the Linearized TWT (LTWT), namely 5 dB, 9 dB, and 10 dB improvements with the linearizer at 29 GHz, 30 GHz, and 31 GHz respectively for the demand of 25 dBc Carrier to third InterModulation (C/IM3) ratioin in communication system. The linearity of TWT is clearly improved with the linearizer, which serves as a great value for engineering application. -
SEYMOUR C D. Development of spacecraft solid-state high power L-band amplifiers[J]. IEE Proceedings F Communications, Radar and Signal Processing, 1986, 133(4): 326-338. doi: 10.1049/ip-f-1:19860056. FAULKNER M. Amplifier linearization using RF feedback and feedforward techniques[J]. IEEE Transactions on Vehicular Technology, 1998, 47(1): 209-215. dio: 10.1109/25. 661047. KENSINGTON P B and BENNETT D W. Linear distortion correction using a feed forward system[J]. IEEE Transactions on Vehicular Technology, 1996, 45(1): 74-81. doi: 10.1109/25. 481823. ALLEN K, SHABBIR M, and JERRY K. Passive FET MMIC linearizers for C, X and Ku-band satellite application [C]. IEEE MTT-S Digest, USA, 1993: 353-356. doi: 10.1109/ MWSYM.1993.276805. YAMAUCHI K, MORI K, NAKAYAMA M, et al. A microwave miniaturized linearizer using a parallel diode with a bias feed resisitance[J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(12): 2431-2435. doi: 10. 1109/22.643856. ALLEN K, ROBERT G, and ROGER D. Wide/Multi-band linearization of TWTAs using predistortion[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 959-964. doi: 10.1109/TED.2009.2015412. GHANNOUCHI F M. An S band RF digital linearizer for TWTAs and SSPAs[C]. European Conference on Circuit Theory and Design, Antalya, Turkey, 2009: 735-738. doi: 10.1109/ ECCTD.2009.5275092. 胡欣, 王剛, 王自成, 等. 一種場效應(yīng)管預(yù)失真電路對改善行波管非線性的作用[J]. 電子與信息學(xué)報, 2011, 33(4): 951-955. doi: 10.3724/SP.J.1146.2010.00789. HU Xin, WANG Gang, WANG Zicheng, et al. Improvement of TWT nonlinearity with a field effect transistor predistortion circuit[J]. Journal of Electronics Information Technology, 2011, 33(4): 951-955. doi: 10.3724/SP.J.1146. 2010.00789. 劉潔, 胡波雄, 王剛, 等. 一種適用于Ku波段行波管放大器的預(yù)失真線性化器[J]. 電子與信息學(xué)報, 2014, 36(10): 2515-2520. doi: 10.3724/SP.J.1146.2013.01820. LIU Jie, HU Boxiong, WANG Gang, et al. A predistortion linearizer for Ku-band traveling wave tube amplifier[J]. Journal of Electronics Information Technology, 2014, 36(10): 2515-2520. doi: 10.3724/SP.J.1146.2013.01820. VILLENMAZET J F, HISSA Y, AZZARA J C, et al. 1 GHz instantaneous wide-band analog predistortion linearizer for new telecom satellite transmit section[C]. IEEE Thirteenth International Vacuum Electronics Conference (IVEC), Monterey, California, USA, 2012: 425-426. doi: 10.1109/ IVEC.2012.6262224. YOUNKYU C, DECKMAN B C, and DELISIO M P. Linearization of a spatially-combined X-band 100-W GaAs FET[C]. Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, California, USA, 2012: 1-4. doi: 10.1109/CSICS.2012.6340066. KATZ A and CHOKOLA D. The evolution of linearizers for high power amplifiers[C]. IEEE MTT-S International Microwave Symposium (IMS), Phoenix, Arizona, USA, 2015: 1-4. doi: 10.1109/MWSYM.2015.7167120. GUO Yan, YU Chao, and ZHU Anding. Simplified power adaptive digital predistorter for RF power amplifier in dynamic power transmission[C]. Proceedings of the 10th European Microwave Integrated Circuits Conference, Paris, France, 2015: 281-284. doi: 10.1109/EuMIC.2015.7345124. MA Yuelin and YAMAO Y. Experimental results of digital predistorter for very wideband mobile communication system[C]. Vehicular Technology Conference, Glasgow, Scotland, UK, 2015: 2384-2387. doi: 10.1109/ VTCSpring.2015. 7145834. LONG Zhenren, WANG Hua, GUAN Ning, et al. Indirect learning hybrid memory predistorter based on polynomial and look-up-table[C]. Vehicular Technology Conference, Glasgow, Scotland, UK, 2015: 361-365. doi: 10.1109/ VTCSpring. 2015.7145877. -