一種WiFi多信道聚合的高速同步回傳方法
doi: 10.11999/JEIT160375
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61471303),歐盟 FP7 QUICK項(xiàng)目(PIRSES-GA-2013-612652)
High-speed Synchronous Backhaul Method with Aggregation of Multiple WiFi Channels
Funds:
The National Natural Science Foundation of China (61471303), EU FP7 QUICK Project (PIRSES-GA-2013-612652)
-
摘要: 為滿足瘋狂增長(zhǎng)的數(shù)據(jù)業(yè)務(wù)需求,近年來蜂窩基站的部署越來越趨于小型化和密集化,這就對(duì)回傳技術(shù)性能提出了更高的要求。該文將WiFi作為5G網(wǎng)絡(luò)中的一種無線回傳技術(shù),提出一種基于WiFi多信道聚合的高速同步回傳方案?,F(xiàn)有WiFi協(xié)議(如IEEE 802.11n/ac)采用靜態(tài)或動(dòng)態(tài)信道綁定技術(shù)可將多個(gè)具有連續(xù)頻譜的信道聚合為單一寬信道,從而提高網(wǎng)絡(luò)容量。但是,靜態(tài)綁定方式不夠靈活,動(dòng)態(tài)綁定方式在密集用戶分布下也很難發(fā)揮其優(yōu)勢(shì)。該文則通過在單一網(wǎng)絡(luò)節(jié)點(diǎn)上配置多射頻實(shí)現(xiàn)非連續(xù)頻譜的WiFi多信道聚合,其在擴(kuò)展傳輸帶寬,提升網(wǎng)絡(luò)性能的同時(shí),也可以有效克服802.11n/ac中信道綁定方式的弊端。方案主要包括3部分:多節(jié)點(diǎn)聯(lián)合信道掃描、多信道同步收發(fā)控制及干擾檢測(cè)。理論分析和仿真結(jié)果表明,所提非連續(xù)頻譜的WiFi多信道聚合方案的回傳性能優(yōu)于802.11n/ac中連續(xù)頻譜聚合方案,且多信道同步傳輸能有效抑制回傳網(wǎng)絡(luò)中的鄰道干擾。最后,由搭建的原型驗(yàn)證系統(tǒng)證明了所提方案的可行性及有效性。Abstract: As the substantial growth of data traffic over the past few years, the deployment of cellular base stations tends to be smaller and denser which puts forward higher requirements for backhaul techniques. In this study, WiFi is taken as a backhaul technique in 5G networks, and then a high-speed synchronous backhaul solution is proposed with aggregation of multiple WiFi channels of which the spectrum is non-continuous. Although IEEE 802.11n/ac can achieve channel aggregation with static/dynamic channel bonding scheme, the spectrum of these channels must be continuous. Moreover, static channel bonding is not flexible enough and dynamic channel bonding rarely has chance to be implemented when devices are deployed densely. The proposed solution can not only extend transmission bandwidth and improve network capacity of 5G backhaul networks, but also overcome defects of channel bonding in 802.11n/ac. Both analytical results and simulations show that the performance of the proposed solution is better than the traditional channel bonding and it can reduce adjacent channel interference among multiple channels in 5G backhaul networks. Meanwhile, the effectiveness and feasibility of the proposed solution are proved by the prototype verification system.
-
Key words:
- 5G /
- Multi-channel backhaul /
- Synchronous transmission /
- Adjacent channel interference
-
TIPMONGKOLSILP O, ZAGHLOUL S, and JUKAN A. The evolution of cellular backhaul technologies: Current issues and future trends[J]. IEEE Communications Surveys Tutorials, 2011, 13(1): 97-113. doi: 10.1109/SURV.2011. 040610.00039. IEEE. IEEE Std 802.11nTM-2009 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) SpecificationsAmendment 5: Enhancements for Higher Throughput[S]. New York, IEEE Inc., 2009. IEEE. IEEE P802.11acTM/D7.0-2013 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) SpecificationsAmendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz[S]. New York, IEEE Inc., 2013. PARK M. IEEE 802.11ac: Dynamic bandwidth channel access[C]. IEEE International Conference on Communications, Kyoto, Japan, 2011: 1-5. BUKHARI S H R, REHMANI M H, and SIRAJ S. A survey of channel bonding for wireless networks and guidelines of channel bonding for futuristic cognitive radio sensor networks[J]. IEEE Communications Surveys Tutorials, 2016, 18(2): 924-948. doi: 10.1109/COMST.2015.2504408. HUANG P, YANG X, and XIAO L. Dynamic channel bonding: enabling flexible spectrum aggregation[J]. IEEE Transactions on Mobile Computing, 2016, 15(12): 3042-3056. doi: 10.1109/TMC. 2016.2524573. ZHANG W, KWAK K S, WANG H, et al. A practical MAC protocol supporting discontinuous channel bonding[C]. IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 2013: 510-511. WU D, YANG S H, BAO L, et al. Joint multi-radio multi- channel assignment, scheduling, and routing in wireless mesh networks[J]. Wireless Networks, 2014, 20(1): 11-24. doi: 10. 1007/s11276-013-0568-y. WONG H O and ANG A H. Channel allocation in multi- radio multi-channel wireless mesh networks: A categorized survey[J]. KSII Transactions on Internet Information Systems, 2015, 9(5): 1642-1661. doi: 10.3837/tiis.2015.05. 005. 張劼, 鐘朗, 李廣軍, 等. 基于節(jié)點(diǎn)優(yōu)先級(jí)的無線Mesh網(wǎng)絡(luò)資源分配[J]. 電子科技大學(xué)學(xué)報(bào), 2016, 45(1): 54-59. doi: 10.3969/j.issn.1001-0548.2016.01.008. ZHANG Jie, ZHONG Lang, LI Guangjun, et al. Node- priority based resource allocation in wireless mesh networks [J]. Journal of University of Electronic Science and Technology of China, 2016, 45(1): 54-59. doi: 10.3969/j.issn. 1001-0548.2016.01.008. NACHTIGALL J, ZUBOW A, and REDLICH J P. The impact of adjacent channel interference in multi-radio systems using IEEE 802.11[C]. International Wireless Communications and Mobile Computing Conference, Crete Island, Greece, 2008: 874-881. ZUBOW A and SOMBRUTZKI R. Adjacent channel interference in IEEE 802.11n[C]. Wireless Communications and Networking Conference, Shanghai, China, 2012: 1163-1168. PERAHIA E and STACEY R. Next Generation Wireless LANs: Throughput, Robustness, and Reliability in 802.11n [M]. New York, Cambridge University Press, 2008: 46. CHOSOKABE Y, UWAI T, NAGAO Y, et al. A channel adaptive hybrid aggregation scheme for next generation wireless LAN[C]. Wireless Communications and Networking Conference Workshops, New Orleans, LA, USA, 2015: 153-158. -
計(jì)量
- 文章訪問數(shù): 1837
- HTML全文瀏覽量: 264
- PDF下載量: 680
- 被引次數(shù): 0