模糊非基因信息記憶的雙克隆選擇算法
doi: 10.11999/JEIT160359
-
2.
(湖南工程學(xué)院計(jì)算機(jī)與通信學(xué)院 湘潭 411104) ②(中南大學(xué)信息科學(xué)與工程學(xué)院 長(zhǎng)沙 410083) ③(湖南財(cái)政經(jīng)濟(jì)學(xué)院信息管理系 長(zhǎng)沙 410205)
國(guó)家自然科學(xué)基金(61272295, 61673164, 61402540),湖南省自然科學(xué)基金(2016JJ6031, 2016JJ2040),湖南省教育廳科學(xué)研究項(xiàng)目(16A049, 13A010)
Double Clonal Selection Algorithm Based on Fuzzy Non-genetic Information Memory
-
2.
(College of Computer and Communication, Hunan Institute of Engineering, Xiangtan 411104, China)
The National Natural Science Foundation of China (61272295, 61673164, 61402540), The Natural Science Foundation of Hunan Province (2016JJ6031, 2016JJ2040), The Scientific Research Fund of Hunan Provincial Education Department (16A049, 13A010)
-
摘要: 該文針對(duì)傳統(tǒng)智能優(yōu)化算法中虛擬碰撞而導(dǎo)致的全局搜索效率降低的問(wèn)題,提出一種模糊非基因信息記憶的雙克隆選擇算法。該算法設(shè)計(jì)基于模糊非基因信息的搜索機(jī)制與克隆選擇原理相結(jié)合,對(duì)抗體進(jìn)化中的非基因信息進(jìn)行采集、模糊化并保存到記憶庫(kù),運(yùn)用這些信息引導(dǎo)該抗體后續(xù)的雙克隆搜索過(guò)程,從而減少非優(yōu)區(qū)域的虛擬碰撞,提高全局搜索效率。通過(guò)標(biāo)準(zhǔn)測(cè)試函數(shù)的仿真試驗(yàn)并與其他算法比較,新算法表現(xiàn)出更快的全局收斂速度和更高的全局收斂精度。
-
關(guān)鍵詞:
- 克隆選擇 /
- 智能記憶 /
- 模糊信息 /
- 數(shù)值優(yōu)化
Abstract: To provide a better solution for search efficiency reduction problem caused by pseudo collision in the traditional intelligent optimization algorithms, this paper proposes a double clonal selection algorithm based on fuzzy non-genetic information memory. By combing with clonal selection theory, the search mechanism based on fuzzy non-genetic information memory is well performed. The non-genetic information in antibody evolution is collected, fuzzified and stored in the memory. Using this information to guide the subsequent double cloning search process, it can reduce the pseudo collision in non-optimal area, thus the global search efficiency is improved greatly. Extensive simulations show that the proposed algorithm has fast global convergence rate and high global convergence accuracy. Comparative results further demonstrate that it performs better than existing algorithms.-
Key words:
- Clonal selection /
- Intelligent memory /
- Fuzzy information /
- Numerical optimization
-
DE CASTRO L N and VON ZUBEN F J. Learning and optimization using the clonal selection principle[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239-251. doi: 10.1109/TEVC.2002.1011539. GONG Maoguo, JIAO Licheng, and ZHANG Lining. Baldwinian learning in clonal selection algorithm for optimization[J]. Information Sciences, 2010, 180(8): 1218-1236. doi: 10.1016/j.ins.2009.12.007. IRINA Ciornei and ELIAS Kyriakides. Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42(1): 234-245. doi: 10.1109/TSMCB. 2011.2164245. HO S L, YANG S Y, BAI Y N, et al. A robust metaheuristic combining clonal colony optimization and population-based incremental learning methods[J]. IEEE Transactions on Magnetics, 2014, 50(2): 677-680. doi: 10.1109/TMAG.2013. 2283886. PENG Y and LU B L. Hybrid learning clonal selection algorithm[J]. Information Sciences, 2015, 296(1): 128-146. doi: 10.1016/j.ins.2014.10.056. TAYARANI-N M, YAO X, and XU M. Meta-heuristic algorithms in car engine design: A literature survey[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(5): 609-629. doi: 10.1109/tevc.2014.2355174. CAMPELO F, GUIMARES F G, IGARASHI H, et al. A clonal selection algorithm for optimization in electromagnetics[J]. IEEE Transactions on Magnetics, 2005, 41(5): 1736-1739. doi: 10.1109/tmag.2005.846043. LIU R C, JAO L C, ZHANG X, et al. Gene transposon based clone selection algorithm for automatic clustering[J]. Information Sciences, 2012, 204(22): 1-22. doi: 10.1016/ j.ins.2012.03.021. SHANG R H, JIAO L C, XU H, et al. Quantum immune Clone for Solving constrained multi-objective Optimization [C]. 2015 IEEE Congress on Evolutionary Compntation, Sendai, Japan, 2015: 3049-3056. doi: 10.1109/CEC.2015. 7257269. 高維尚, 邵誠(chéng), 高琴. 群體智能優(yōu)化中的虛擬碰撞: 雨林算法[J]. 物理學(xué)報(bào), 2013, 62(19): 28-43. doi: 10.7498/aps.62. 190202. GAO Weishang, SHAO Cheng, and GAO Qin. Pseudo- collision in swarm optimization algorithm and solution: Rain forest algorithm[J]. Acta Physica Sinica, 2013, 62(19): 28-43. doi: 10.7498/aps.62.190202. MININNO E, NERI F, CUPERTINO F, et al. Compact differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 32-54. doi: 10.1109/tevc.2010. 2058120. SABAR N R, AYOB M, KENDALL G, et al. Grammatical evolution hyper-heuristic for combinatorial optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(6): 840-861. doi: 10.1109/TEVC.2013. 2281527. BOUAZIZ S, ALIMI A M, and ABRAHAM A. PSO-based update memory for improved harmony search algorithm to the evolution of FBBFNT parameters[C]. 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 2014: 1951-1958. doi: 10.1109/CEC.2014.6900304. 劉若辰, 賈建, 趙夢(mèng)玲, 等. 一種免疫記憶動(dòng)態(tài)克隆策略算法[J]. 控制理論與應(yīng)用, 2007, 24(5): 777-784. doi: 10.3969/j. issn.1000-8152.2007.05.016. LIU Ruochen, JIA Jian, ZHAO Mengling, et al. An immune memory dynamic clonal strategy algorithm[J]. Control Theory Applications, 2007, 24(5): 777-784. doi: 10.3969/ j.issn.1000-8152.2007.05.016. 朱思峰, 劉芳, 柴爭(zhēng)義, 等. 簡(jiǎn)諧振子免疫優(yōu)化算法求解異構(gòu)無(wú)線(xiàn)網(wǎng)絡(luò)垂直切換判決問(wèn)題[J]. 物理學(xué)報(bào), 2012, 61(9): 375-384. doi: 10.7498/aps.61.096401. ZHU Sifeng, LIU Fang, CHAI Zhengyi, et al. Simple harmonic oscillator immune optimization algorithm for solving vertical handoff decision problem in heterogeneous wireless network[J]. Acta Physica Sinica, 2012, 61(9): 375-384. doi: 10.7498/aps.61.096401. ZITZLER E and THIELE L. Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271. doi: 10.1109/4235.797969. ZITZLER E, LAUMANNS M, and THIELE L. SPEA2: Improving the strength Pareto evolutionary algorithm[C]. Proceedings of the Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems, Athens, Greece, 2001: 19-26. CAI Zixing and WANG Yong. A multiobjective optimization based evolutionary algorithm for constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 658-675. doi: 10.1109/TEVC.2006.872344. 鄧澤林, 譚冠政, 何锫, 等. 一種基于動(dòng)態(tài)識(shí)別鄰域的免疫網(wǎng)絡(luò)分類(lèi)算法及其性能分析[J]. 電子與信息學(xué)報(bào), 2015, 37(5): 1167-1172. doi: 10.11999/JEIT141077. DENG Zelin, TAN Guanzheng, HE Pei, et al. A dynamic recognition neighborhood based immune network classification algorithm and its performance analysis[J]. Journal of Electronics Information Technology, 2015, 37(5): 1167-1172. doi: 10.11999/JEIT141077. WANG H, WU Z and RAHANAMAYAN S. Enhancing particle swarm optimization using generalized opposition based learning[J]. Information Sciences, 2011, 181(20): 4699-4714. doi: 10.1016/j.ins.2011.03.016. 喻飛, 李元香, 魏波, 等. 透鏡成像反學(xué)習(xí)策略在粒子群算法中的應(yīng)用[J]. 電子學(xué)報(bào), 2014, 42(2): 230-235. doi: 10.3969/ j.issn.0372-2112.2014.02.004. YU Fei, LI Yuanxiang, WEI Bo, et al. The application of a novel OBL based on lens imaging principle in PSO[J]. Acta Electronica Sinica, 2014, 42(2): 230-235. doi: 10.3969/j.issn. 0372-2112.2014.02.004. -
計(jì)量
- 文章訪(fǎng)問(wèn)數(shù): 1470
- HTML全文瀏覽量: 126
- PDF下載量: 559
- 被引次數(shù): 0