一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于分裂基-2/(2a)FFT算法的卷積神經(jīng)網(wǎng)絡(luò)加速性能的研究

伍家松 達(dá)臻 魏黎明 SENHADJILotfi 舒華忠

伍家松, 達(dá)臻, 魏黎明, SENHADJILotfi, 舒華忠. 基于分裂基-2/(2a)FFT算法的卷積神經(jīng)網(wǎng)絡(luò)加速性能的研究[J]. 電子與信息學(xué)報(bào), 2017, 39(2): 285-292. doi: 10.11999/JEIT160357
引用本文: 伍家松, 達(dá)臻, 魏黎明, SENHADJILotfi, 舒華忠. 基于分裂基-2/(2a)FFT算法的卷積神經(jīng)網(wǎng)絡(luò)加速性能的研究[J]. 電子與信息學(xué)報(bào), 2017, 39(2): 285-292. doi: 10.11999/JEIT160357
WU Jiasong, DA Zhen, WEI Liming, SENHADJI Lotfi, SHU Huazhong. Acceleration Performance Study of Convolutional Neural Network Based on Split-radix-2/(2a) FFT Algorithms[J]. Journal of Electronics & Information Technology, 2017, 39(2): 285-292. doi: 10.11999/JEIT160357
Citation: WU Jiasong, DA Zhen, WEI Liming, SENHADJI Lotfi, SHU Huazhong. Acceleration Performance Study of Convolutional Neural Network Based on Split-radix-2/(2a) FFT Algorithms[J]. Journal of Electronics & Information Technology, 2017, 39(2): 285-292. doi: 10.11999/JEIT160357

基于分裂基-2/(2a)FFT算法的卷積神經(jīng)網(wǎng)絡(luò)加速性能的研究

doi: 10.11999/JEIT160357
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61201344, 61271312, 61401085),高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20120092120036)

Acceleration Performance Study of Convolutional Neural Network Based on Split-radix-2/(2a) FFT Algorithms

Funds: 

The National Natural Science Foundation of China (61201344, 61271312, 61401085), The Special Research Fund for the Doctoral Program of Higher Education (20120092120036)

  • 摘要: 卷積神經(jīng)網(wǎng)絡(luò)在語(yǔ)音識(shí)別和圖像識(shí)別等眾多領(lǐng)域取得了突破性進(jìn)展,限制其大規(guī)模應(yīng)用的很重要的一個(gè)因素就是其計(jì)算復(fù)雜度,尤其是其中空域線性卷積的計(jì)算。利用卷積定理在頻域中實(shí)現(xiàn)空域線性卷積被認(rèn)為是一種非常有效的實(shí)現(xiàn)方式,該文首先提出一種統(tǒng)一的基于時(shí)域抽取方法的分裂基-2/(2a) 1維FFT快速算法,其中a為任意自然數(shù),然后在CPU環(huán)境下對(duì)提出的FFT算法在一類卷積神經(jīng)網(wǎng)絡(luò)中的加速性能進(jìn)行了比較研究。在MNIST手寫數(shù)字?jǐn)?shù)據(jù)庫(kù)以及Cifar-10對(duì)象識(shí)別數(shù)據(jù)集上的實(shí)驗(yàn)表明:利用分裂基-2/4 FFT算法和基-2 FFT算法實(shí)現(xiàn)的卷積神經(jīng)網(wǎng)絡(luò)相比于空域直接實(shí)現(xiàn)的卷積神經(jīng)網(wǎng)絡(luò),精度并不會(huì)有損失,并且分裂基-2/4能取得最好的提速效果,在以上兩個(gè)數(shù)據(jù)集上分別提速38.56%和72.01%。因此,在頻域中實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)的線性卷積操作是一種十分有效的實(shí)現(xiàn)方式。
  • HINTON G E and SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313: 504-507. doi: 10.1126/science.1127647.
    HINTON G E, OSINDERO S, and TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527.
    BENGIO Y, COURVILLE A, and VINCENT P. Representation learning: A review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828. doi: 10.1109/TPAMI. 2013.50.
    LECUN Y, BENGIO Y, and HINTON G E. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539.
    DENG L and YU D. Deep learning: Methods and applications[J]. Foundations and Trends in Signal Processing, 2014, 7(3): 197-387.
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 2012: 1097-1105.
    SZEGEDY C, LIU W, JIA Y Q, et al.. Going deeper with convolutions[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 1-9.
    JADERBERG M, VEDALDI A, and ZISSERMAN A. Speeding up convolutional neural networks with low rank expansions[J]. Computer Science, 2014, 4(4): XIII.
    LIU B, WANG M, FOROOSH H, et al. Sparse Convolutional neural networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, United States, 2015: 806-814.
    VASILACHE N, JOHNSON J, MATHIEU M, et al. Fast convolutional nets with fbfft: A GPU performance evaluation [C]. International Conference on Learning Representations, San Diego, CA,USA, 2015: 1-17.
    COOLEY J W and TUKEY J W. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 90(19): 297-301. doi: 10.2307/2003354.
    DUHAMEL P and VETTERLI M. Fast Fourier transforms: A tutorial review and a state of the art [J]. Signal Processing, 1990, 19(4): 259-299. doi: 10.1016/0165-1684(90)90158-U.
    WINOGRAD S. On computing the discrete Fourier transform[J]. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(4): 1005-1006. doi: 10.1073/pnas.73.4.1005.
    KOLBA D P and PARKS T W. A prime factor algorithm using high-speed convolution[J]. IEEE Transactions on Acoustics Speech Signal Processing, 1977, 25(4): 281-294. doi: 10.1109/TASSP.1977.1162973.
    DUHAMEL P and HOLLMANN H. Implementation of Split-radix FFT algorithms for complex, real, and real symmetric data[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Tampa, FL, USA, 1985: 285-295.
    BOUGUEZEL S, AHMAD M O, and SWAMY M N S. A general class of split-radix FFT algorithms for the computation of the DFT of length-2m [J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4127-4138. doi: 10.1109/ TSP.2007.896110.
    BI G, LI G, and LI X. A unified expression for split-radix DFT algorithms[C]. IEEE International Conference on Communications, Circuits and Systems, Chengdu, China, 2010: 323-326.
    FARHANG BOROUJENY B and LIM Y C. A comment on the computational complexity of sliding FFT[J]. IEEE Transactions on Circuits and Systems II Analog and Digital Signal Processing, 1992, 39(12): 875-876. doi: 10.1109/82. 208583.
    PARK C S and KO S J. The hopping discrete Fourier transform[J]. IEEE Signal Processing Magazine, 2014, 31(2): 135-139. doi: 10.1109/MSP.2013.2292891.
    GOUK H G and BLAKE A M. Fast sliding window classification with convolutional neural networks[C]. Proceedings of the 29th International Conference on Image and Vision Computing, New Zealand, 2014: 114-118.
    RAO K R, KIM D N, and HWANG J J. Fast Fourier Transform: Algorithms and Applications[M]. Berlin: Springer Science Business Media, 2011: 5-6.
    FRIGO M and JOHNSON S G. FFTW: An adaptive software architecture for the FFT[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Seattle, WA, USA, 1998: 1381-1384.
    SERMANET P, EIGEN D, ZHANG X, et al. Overfeat: Integrated recognition, localization and detection using convolutional networks[OL]. arXiv:1312.6229. 2013: 1-16.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1919
  • HTML全文瀏覽量:  183
  • PDF下載量:  661
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-04-12
  • 修回日期:  2016-12-02
  • 刊出日期:  2017-02-19

目錄

    /

    返回文章
    返回