Carrier-less Position/Phase Modulation forVisible Light Communications
Funds:
The National Natural Science Foundation of China (61371091)
-
摘要: 為了保證可見光通信(VLC)系統(tǒng)能夠?yàn)橹悄芙K端提供高速率、低能耗的數(shù)據(jù)傳輸服務(wù)。該文基于脈沖位置調(diào)制(PPM)技術(shù),提出了一種新型的無(wú)載波位相(CPP)調(diào)制技術(shù),即通過(guò)運(yùn)用正交濾波器提高了PPM的傳輸速率。而針對(duì)采用CPP調(diào)制在VLC系統(tǒng)中功率效率顯著降低的問(wèn)題,提出了全新的時(shí)變偏置有效地降低了系統(tǒng)的功耗。最后仿真結(jié)果表明,采用時(shí)變偏置的CPP系統(tǒng)同采用直流偏置相比,在獲得相同BER性能且?guī)捠芟薜那闆r下可以節(jié)省2 dB的信噪比。而同時(shí)考慮信號(hào)時(shí)隙之間的相關(guān)性,時(shí)變偏置可以進(jìn)一步提升約1.5 dB的BER性能。
-
關(guān)鍵詞:
- 可見光通信 /
- 脈沖位置調(diào)制 /
- 無(wú)載波位相 /
- 時(shí)變偏置
Abstract: In order to guarantee that Visible Light Communication (VLC) can provide both high-speed and low energy consumption data transmission services. A modulation named by Carrier-less Position/Phase (CPP) based on Pulse Position Modulation (PPM) is proposed. By utilizing the orthogonal filters, the transmission rate of the PPM is improved. According to that employing CPP modulation in VLC makes power efficiency significantly reduced, a novel variable bias is presented as an effort to reduce the power consumption effectively. Finally, the simulation results illustrate that applying the proposed variable bias to CPP scheme, compared to DC bias, the new scheme can save 2 dB of SNR to obtain the same BER performance under the bandwidth constrained conditions. After further considering slots correlation, the variable bias can further improve the BER performance by 1.5 dB. -
PATHAK P H, FENG X, HU P, et al. Visible light communication, networking, and sensing: a survey, potential and challenges[J]. IEEE Communications Surveys Tutorials, 2015, 17(4): 2047-2077. doi: 10.1109/COMST. 2015.2476474. KOMINE T and NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions on Consumer Electronics, 2004, 50(1): 100-107. doi: 10.1109/TCE.2004.1277847. HANZO L, HAAS H, IMRE S, et al. Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless[J]. Proceedings of the IEEE, 2012, 100: 1853-1888. doi: 10.1109/JPROC.2012.2189788. IEEE Std 802.15.7-2011. IEEE standard for local and metropolitan area networks--part 15.7: Short-range wireless optical communication using visible light[S]. 2011. doi: 10.1109/COMST.2015.2476474. ELGALA H and LITTLE T D C. Polar-based OFDM and SC-FDE links toward energy-efficient Gbps transmission under IM-DD optical system constraints[J]. IEEE/OSA Journal of Optical Communications and Networking, 2015, 7(2): A277-A284. doi: 10.1364/JOCN.7.00a277. COELHO M V, MATA J L, and MARTINS M J. Simulation of digital optical receiver with intensity modulation and direct detection[C]. IEEE EUROCON-International Conference on Computer as a Tool, Lisbon, 2011: 1-4. doi: 10.1109/EUROCON.2011.5929340. MAHDIRAJI G A and ZAHEDI E. Comparison of selected digital modulation schemes (OOK, PPM and DPIM) for wireless optical communications[C]. 4th Student Conference on Research and Development, Selangor, 2006: 5-10. doi: 10.1109/SCORED.2006.4339297. AZZAM N, ALY M H, and ABULSEOUD A K. Bandwidth and power efficiency of various PPM schemes for indoor wireless optical communications[C]. National Radio Science Conference, New Cairo, 2009: 1-11. SETHAKASET U and GULLIVER T A. Performance of Differential Pulse-Position Modulation (DPPM) with concatenated coding over indoor wireless infrared communications[C]. IEEE 63rd Vehicular Technology Conference, Melbourne, 2006, 4: 1792-1796. doi: 10.1109/ VETECS.2006.1683155. NOSHAD M and BRANDT-PEARCE M. Application of expurgated PPM to indoor visible light communications-Part I: Single-user systems[J]. Journal of Lightwave Technology, 2014, 32(5): 875-882. doi: 10.1109/JLT.2013.2293341. ABDULLAH M F L and BONG S W. Adaptive differential amplitude pulse-position modulation technique for optical wireless communication channels based on fuzzy logic[J]. IET Communications, 2014, 8(4): 427-432. doi: 10.1049/iet-com. 2013.0443. XU C and ZHANG H. Packet error rate analysis of IM/DD systems for ultraviolet scattering communications[C]. IEEE Military Communications Conference, Tampa, 2015: 1188-1193. doi: 10.1109/MILCOM.2015.7357607. Wang Y, Tao L, Huang X, et al. 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer[J]. IEEE Photonics Journal, 2015, 7(6): 1-7. doi: 10.1109/JPHOT.2015.2489927. CZEGLEDI C B, KHANZADI M R, AGRELL E, et al. Bandlimited power-efficient signaling and pulse design for intensity modulation[J]. IEEE Transactions on Communications, 2014, 62(9): 3274-3284. doi: 10.1109/ TCOMM.2014.2349909. TAVAN M, AGRELL E, and KAROUT J. Bandlimited intensity modulation[J]. IEEE Transactions on Communications, 2012, 60(11): 3429-3439. doi: 10.1109/ TCOMM.2012.091712.110496. LONG S , KHALIGHI M A, WOLF M, et al. Performance of carrier-less amplitude and phase modulation with frequency domain equalization for indoor visible light communications[C]. 4th International Workshop on Optical Wireless Communications, Istanbul, 2015: 16-20. doi: 10.1109/IWOW.2015.7342257. WU F M, LIN C T, WEI C C, et al. 1.1-Gb/s white-LED- based visible light communication employing carrier-less amplitude and phase modulation[J]. IEEE Photonics Technology Letters, 2012, 24(19): 1730-1732. doi: 10.1109/ LPT.2012.2210540. 吳永勝, 楊愛英, 孫雨南. 基PPM調(diào)制的低密度矩陣編碼與譯碼[J]. 電子學(xué)報(bào), 2012, 40(10): 1976-1979. doi: 10.3969/ j.issn.0372-2112.2012.10.012. WU Yongsheng, YANG Aiying, and SUN Yunan. A low density matrix coding and decoding method based on PPM modulation[J]. Acta Electronica Sinica, 2012, 40(10): 1976-1979. doi: 10.3969/j.issn.0372-2112.2012.10.012. Azhar A H, Tran T A, and Brien D O. A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications[J]. IEEE Photonics Technology Letters, 2013, 25(2): 171-174. doi: 10.1109/LPT.2012.2231857. -
計(jì)量
- 文章訪問(wèn)數(shù): 1273
- HTML全文瀏覽量: 139
- PDF下載量: 610
- 被引次數(shù): 0