無需預先測速的靶場彈丸落點定位算法實現(xiàn)
doi: 10.11999/JEIT160316
-
2.
(中國科學院上海微系統(tǒng)與信息技術研究所微系統(tǒng)技術國家級重點實驗室 上海 200050) ②(中國科學院大學 北京 100049) ③(中國科學院上海微系統(tǒng)與信息技術研究所 上海 200050)
Landing Point Location Algorithm Without Velocity Measurement in Target Range
-
2.
(Science and Technology on Microsystem Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China)
-
摘要: 該文針對現(xiàn)有靶場彈丸落點定位系統(tǒng)需要提前測量波速,實際應用復雜,定位誤差大等問題,提出一種無需預先測速的彈丸落點定位算法,此算法采用米字型傳感器陣列,米字型陣列又可以分解成2組五元十字陣,通過來波方向(DOA)算法預先估計波速,然后把波束估計值代入到達時間差算法(TDOA)方程中計算初始位置,再把初始位置和估計波速作為參數(shù)代入到泰勒級數(shù)展開算法中,收斂定位。由于不需要預先人工測量波速,減少了波速測量誤差,波速和定位位置都是在迭代算法中逐步收斂求精的,所以該算法提高了彈丸落點定位精度,減少了實際應用的復雜性。仿真算法也驗證了此方法的可行性,在距離定位陣列1000 m范圍內(nèi)迭代算法都是收斂的。Abstract: To overcome the large errors and complexity of measuring the wave velocity of landing point location algorithm in target range, a method based on poisoning algorithm without velocity measurement is proposed. Nine accelerate sensors constitute pozidriv shaped array, which also consists of 2 sets of five-element cross array. DOA algorithm is used to pre-estimate the wave velocity, then the wave velocity as the initial parameter is set into the equation to calculate the initial position. Lastly, as the parameters the initial position and the velocity are set into the Taylor iterative algorithm to get the final location result. Because wave velocity need not to be measurement, measurement error can be reduced, wave velocity and position value can be calculated by iteration algorithm, so this algorithm makes the landing point location more simple, more accurate. The simulation verifies that this method is measurable, and the iterative algorithm is convergent in the range of 1000 meters.
-
朱偉勇. 基于MATLAB的微地震震源定位的研究與實現(xiàn)[D]. [碩士論文], 浙江工業(yè)大學, 2011. doi: 10.7666/d.y1921166. ZHU Weiyong. Based on the MATLAB micro earthquake source positioning of the research and implementation[D]. [Master dissertation]. Zhejiang University of Technology, 2011. doi: 10.7666/d.y1921166. 董隴軍, 李夕兵, 唐禮忠, 等. 無需預先測速的微震震源定位的數(shù)學形式及震源參數(shù)確定[J]. 巖石力學與工程學報, 2011, 30(10): 2059-2067. DONG Longjun, LI Xibing, TANG Lizhong, et al. A method for identifying outlier signals for microseismic event based on arrival time difference[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2059-2067. 馬瑞恒, 錢漢明, 榮英佼, 等. 五元十字陣用于2-D遠場目標精確定位的關鍵因素分析[J]. 彈箭與制導學報, 2005, 25(2): 574-577. doi: 10.3969/j.issn.1673-9728.2005.02.186. MA Ruiheng, QIAN Hanming, RONG Yingjiao, et al. Analysis of the key factors impacting on precise localization of the 2-D far-field target using a planar five-element circle array[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(2): 574-577. doi: 10.3969/j.issn.1673-9728. 2005.02.186. ALLEN R V. Automatic earthquake recognition and timing from single traces[J]. Bulletin of the Seismological Society of America, 1978, 68(5): 1521-1532. 楊俊峰, 張丕狀. 基于DTOA/DOA和牛頓迭代法的震源定位方法研究[J]. 地震研究, 2013, 36(3): 324-329. doi: 10.3969 /j.issn.1000-0666.2013.03.011. YANG Junfeng and ZHANG Pizhuang. Research on seismic source localization method based on DTOA/DOA and Newton iterated algorithm[J]. Journal of Seismological Research, 2013, 36(3): 324-329. doi: 10.3969/j.issn.1000-0666. 2013.03.011. DAI H C and COLIN M B. Automatic picking of seismic arrivals in local earthquake data using an artificial neural Network[J]. Geophysical Journal International, 1995, 120(3): 758-774. doi: 10.1111/j.1365-246X.1995.tb01851.x. 宋葉志. MATLAB數(shù)值分析與應用[M]. 北京: 機械工業(yè)出版社, 2014: 177-181. SONG Yezhi. MATLAB Numerical Analysis and Application [M]. Beijing: China Machine Press, 2014: 177-181. Timothy Sauer. Numerical Analysis[M]. Fairfax: George Mason University, 2014: 205-210. 馬朝軍, 狄長安, 孔德仁, 等. 基于地震波的彈丸落點定位模型[J]. 四川兵工學報, 2012, 33(7): 20-26. doi: 10.3969/j.issn. 1006-0707.2012.07.008. MA Zhaojun, DI Chang-an, KONG Deren, et al. Landing point location model based on seismic wave[J]. Journal of Sichuan Ordnance, 2012, 33(7): 20-26. doi: 10.3969/j.issn. 1006-0707.2012.07.008. 李楠, 王恩元, 孫珍玉, 等. 基于到時差值的微震波異常信號識別方法[J]. 巖石力學與工程學報, 2014, 33(8): 1644-1661. doi: 10.13722/j.cnki.jrme.2014.08.016. LI Nan, WANG Enyuan, SUN Zhenyu, et al. A method for identifying outlier signals for microseismic event based on arrival time difference[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1644-1661. doi: 10.13722/j.cnki. jrme.2014.08.016. HAOHONG D U. The design of a new type of TDOA-based local space mouse[C], IEEE International Conference on Mechatronics and Automation, Beijing, 2015: 1755-1760. doi: 10.1109/ICMA.2015.7237751. GAMBI J M, RODRIGUEZ-TEIJEIRO M C, and GARCIA DEL PINO M L. Newtonian and post-Newtonian passive geolocation by TDOA[J]. Aerospace Science and Technology, 2016, 51: 18-25. doi: 10.1016/j.ast.2016.01.016. MENG Yufeng, XU Jiancheng, HUANG Yan, et al. Key factors of multi-station TDOA passive location study[C], International Conference on Intelligent Human-machine Systems and Cybernetics, Hangzhou, 2015: 220-223. doi: 10.1109/IHMSC.2015.190. GERSON S F and HAE Y K. Identification of pressed keys by time difference of arrivals of mechanical vibrations[J]. Computers and Security, 2016, 57(3): 93-105. doi: 10.1016/j. cose.2015.11.002. QU Xiaomei and XIE Lihua. An efficient convex constrained weighted least squares source localization algorithm based on TDOA measurements[J]. Signal Processing, 2016, 119(2): 142-152. doi: 10.1016/j.sigpro.2015.08.001. ZHONG Xionghu and HOPGOOD J R. A time-frequency masking based random finite set particle filtering method for multiple acoustic source detection and tracking[J]. IEEE/ ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(12): 2356-2370. doi: 10.1109/TASLP. 2015.2479041. ZHU Guohui, FENG Dazheng, XIE Hu, et al. An approximately efficient bi-iterative method for source position and velocity estimation using TDOA and FDOA measurements[J]. Signal Processing, 2016, 125(8): 110-121. doi: 10.1016/j.sigpro.2015.12.013. YIN Jihao, WAN Qun, YANG Shiwen, et al. A simple and accurate TDOA-AOA localization method using two stations [J]. IEEE Signal Processing Letters, 2015, 23(1): 144-148. doi: 10.1109/LSP.2015.2505138. CANCLINI A, BESTAGINI P, ANTONACCI F, et al. A robust and low-complexity source localization algorithm for asynchronous distributed microphone networks[J]. IEEE/ ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(10): 1563-1575. doi: 10.1109/TASLP. 2015.2439040. UYSAL C and FILIK T. A joint detection and localization method for non-cooperative DS-SS signals[C]. IEEE Military Communications Conference, Tampa, FL, 2015: 523-528. doi: 10.1109/MILCOM.2015.7357496. -
計量
- 文章訪問數(shù): 1372
- HTML全文瀏覽量: 272
- PDF下載量: 687
- 被引次數(shù): 0