一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于Fisher約束和字典對(duì)的圖像分類

郭繼昌 張帆 王楠

郭繼昌, 張帆, 王楠. 基于Fisher約束和字典對(duì)的圖像分類[J]. 電子與信息學(xué)報(bào), 2017, 39(2): 270-277. doi: 10.11999/JEIT160296
引用本文: 郭繼昌, 張帆, 王楠. 基于Fisher約束和字典對(duì)的圖像分類[J]. 電子與信息學(xué)報(bào), 2017, 39(2): 270-277. doi: 10.11999/JEIT160296
GUO Jichang, ZHANG Fan, WANG Nan. Image Classification Based on Fisher Constraint and Dictionary Pair[J]. Journal of Electronics & Information Technology, 2017, 39(2): 270-277. doi: 10.11999/JEIT160296
Citation: GUO Jichang, ZHANG Fan, WANG Nan. Image Classification Based on Fisher Constraint and Dictionary Pair[J]. Journal of Electronics & Information Technology, 2017, 39(2): 270-277. doi: 10.11999/JEIT160296

基于Fisher約束和字典對(duì)的圖像分類

doi: 10.11999/JEIT160296
基金項(xiàng)目: 

國(guó)家973計(jì)劃項(xiàng)目(2014CB340400),天津市自然科學(xué)基金(15JCYBJC15500)

Image Classification Based on Fisher Constraint and Dictionary Pair

Funds: 

The National 973 Program of China (2014CB340400), The Natural Science Foundation of Tianjin (15JCYBJC15500)

  • 摘要: 基于稀疏表示的分類方法由于其所具有的簡(jiǎn)單性和有效性獲得了研究者的廣泛關(guān)注,然而如何建立字典原子與類別信息間的聯(lián)系仍然是一個(gè)重要的問(wèn)題,與此同時(shí)大部分稀疏表示分類方法都需要求解受范數(shù)約束的優(yōu)化問(wèn)題,使得分類任務(wù)的計(jì)算較復(fù)雜。為解決上述問(wèn)題,該文提出一種新的基于Fisher約束的字典對(duì)學(xué)習(xí)方法。新方法聯(lián)合學(xué)習(xí)結(jié)構(gòu)化綜合字典和結(jié)構(gòu)化解析字典,然后通過(guò)樣本在解析字典上的映射直接求解稀疏系數(shù)矩陣;同時(shí)采用Fisher判別準(zhǔn)則編碼系數(shù)使系數(shù)具有一定的判別性。最后將新方法應(yīng)用到圖像分類中,實(shí)驗(yàn)結(jié)果表明新方法在提高分類準(zhǔn)確率的同時(shí)還大大降低了計(jì)算復(fù)雜度,相較于現(xiàn)有方法具有更好的性能。
  • RUBINSTEIN R, BRUCKSTEIN A, ELAD M, et al. Dictionaries for sparse representation modeling[J]. Proceedings of the IEEE, 2010, 98(6): 1045-1057. doi: 10.1109/JPROC.2010.2040551.
    GAO Shenghua, TSANG I, and MA Yi. Learning category- specific dictionary and shared dictionary for fine-grained image categorization[J]. IEEE Transactions on Image Processing, 2014, 23(2): 623-634. doi: 10.1109/TIP.2013. 2290593.
    宋相法, 焦李成. 基于稀疏編碼和集成學(xué)習(xí)的多示例多標(biāo)記圖像分類方法[J]. 電子與信息學(xué)報(bào), 2013, 35(3): 622-626. doi: 10.3724/SP.J.1146.2012.01218.
    SONG Xiangfa and JIAO Licheng. A multi-instance multi-label image classification method based on sparse coding and ensemble learning[J]. Journal of Electronics Information Technology, 2013, 35(3): 622-626. doi: 10.3724/ SP.J.1146.2012.01218.
    AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. doi: 10.1109/TSP. 2006.881199.
    MA Long, WANG Chunheng, XIAO Baihua, et al. Sparse representation for face recognition based on discriminative low-rank dictionary learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2586-2593.
    RAMIREZ I, SPRECHMANN P, SAPIRO G, et al. Classification and clustering via dictionary learning with structured incoherence and shared features[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010: 3501-3508.
    NING Zhou and FAN Jianping. Jointly learning visually correlated dictionaries for large-scale visual recognition applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4): 715-730. doi: 10.1109/ TPAMI.2013.189.
    JIANG Zhuolin, LIN Zhe, LARRY S, et al. Label consistent K-SVD: Learning a discriminative dictionary for recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2651-2664. doi: 10.1109/TPAMI. 2013.88.
    YANG Meng, ZHANG Lei, FENG Xiangchu, et al. Sparse representation based fisher discrimination dictionary learning for image classication[J]. International Journal of Computer Vision, 2014, 109(3): 209-232. doi: 10.1007/s11263-014- 0722- 8.
    練秋生, 石保順, 陳書貞. 字典學(xué)習(xí)模型、算法及其應(yīng)用研究進(jìn)展[J]. 自動(dòng)化學(xué)報(bào), 2015, 41(2): 240-260. doi: 10.16383/ j.aas.2015.c140252.
    LIAN Qiusheng, SHI Baoshun, and CHEN Shuzhen. Research advances on dictionary learning models, algorithms and applications[J]. Acta Automatica Sinica, 2015, 41(2): 240-260. doi: 10.16383/j.aas.2015.c140252.
    RUBINSTEIN R, PELEG T, and ELAD M. Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 661-677. doi: 10.1109/TSP.2012.2226445.
    CHEN Yunjin, RANFTL R, and POCK T. Insights into analysis operator learning: From patch-based sparse models to higher order MRFs[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1060-1072. doi: 10.1109/TIP.2014. 2299065.
    GU Shuhang, ZHANG Lei, ZUO Wangmeng, et al. Projective dictionary pair learning for pattern classification[C]. Advances in Neural Information Processing System, Vancouver, BC, Canada, 2014, 1: 793-801.
    RAKOTOMAMONJY A. Applying alternating direction method of multipliers for constrained dictionary learning[J]. Neurocomputing, 2013, 61(3): 126-136. doi: 10.1016/j. neucom.2012.10.024.
    CAI Sijia, ZUO Wangmeng, ZHANG Lei, et al. Support vector guided dictionary learning[C]. European Conference on Computer Vision, Zurich, Switzerland, 2014, 8692: 624-639.
    GORSKI J, PFEUFFER F, and KLAMROTH K. Biconvex sets and optimization with biconvex functions: a survey and extensions[J]. Mathematical Methods of Operations Research, 2007, 66(3): 373-407. doi: 10.1007/s00186-007-0161-1.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1313
  • HTML全文瀏覽量:  146
  • PDF下載量:  527
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-03-31
  • 修回日期:  2016-07-25
  • 刊出日期:  2017-02-19

目錄

    /

    返回文章
    返回