基于空頻分解信號(hào)子空間向量的時(shí)間反演成像
doi: 10.11999/JEIT160272
基金項(xiàng)目:
國(guó)家自然科學(xué)基金委和中國(guó)工程物理研究院聯(lián)合基金(U1330109)
Time Reversal Imaging Algorithm Based on Signal-subspaceVectors from the Spatial-frequency Decomposition
Funds:
The United Fund of National Natural Science Foundation of China and China Academy of Engineering Physics (U1330109)
-
摘要: 論文提出基于空頻分解信號(hào)子空間向量的時(shí)間反演成像新方法。利用天線陣列采集的散射場(chǎng)數(shù)據(jù)建立空頻矩陣,奇異值分解該矩陣得到信號(hào)子空間向量,以此實(shí)現(xiàn)對(duì)目標(biāo)的選擇性成像?;谕耆⑸鋱?chǎng)數(shù)據(jù)的成像偽譜包含多個(gè)子向量貢獻(xiàn),相當(dāng)于多次成像疊加,具有統(tǒng)計(jì)特性。新方法既避免了傳統(tǒng)的空空分解時(shí)間反演算法產(chǎn)生的隨機(jī)相位的影響,又具有較好的抗干擾性能,即使疊加信噪比10 dB的高斯白噪聲,也能實(shí)現(xiàn)對(duì)多個(gè)目標(biāo)的準(zhǔn)確成像。
-
關(guān)鍵詞:
- 時(shí)間反演成像 /
- 空頻成像 /
- 空頻分解 /
- 空頻多態(tài)響應(yīng)矩陣
Abstract: Basing on the signal-subspace vectors from the spatial-frequency decomposition, a novel time-reversal imaging algorithm is proposed. Using the backscattered data recorded by the antenna array, a spatial-frequency multistatic matrix is set up. Singular value decomposition is applied to the matrix to obtain the signal-subspace vectors, which are employed to focus the targets imaging selectively. The imaging pseudo-spectrum based on the full backscattered data includes the contributions of multiple sub-vectors and can be viewed as the superposition of multiple images. The algorithm is statistically stable. The random phases, generated by the conventional time-reversal imaging method based on the spatial-spatial decomposition, do not arise in the algorithm. It has excellent capability to resist the noise interference and can accurately focus the multi-targets even when noise with 10 dB SNR is added to the measured data. -
YAVUZ M E and TEIXEIRA F L. A numerical study of time reversed UWB electromagnetic waves in continuous random media[J]. IEEE Antennas and Wireless Propagation Letters, 2005, 4(6): 43-46. doi: 10.1109/LAWP.2005.844117. DEVANEY A J. Time reversal imaging of obscured targets from multistatic data[J]. IEEE Transactions on Antennas Propagation, 2005, 53(5): 1600-1610. doi: 10.1109/TAP. 2005. 846723. 范晶晶, 趙德雙, 張浩然, 等. 基于時(shí)間反演的天線陣列激勵(lì)分布確定方法研究[J]. 電子與信息學(xué)報(bào), 2014, 36(9): 2238-2243. doi: 10.3724/SP.J.1146.2013.01737. FAN Jingjing, ZHAO Deshuang, ZHANG Haoran, et al. Array excitation determining method based on time reversal [J]. Journal of Electronics Information Technology, 2014, 36(9): 2238-2243. doi: 10.3724/SP.J.1146.2013.01737. PRADA C, MANNEVILE S, SPOLIANSKY D, et al. Decomposition of the time reversal operator: Detection and selective focusing on two scatterers[J]. Journal of the Acoustical Society of America, 1996, 99(4): 2067-2076. YAVUZ M E and TEIXEIRA F L. Full time-domain DORT for ultrawideband fields in dispersive, random inhomogeneous media[J]. IEEE Transactions on Antennas Propagation, 2006, 54(8): 2305-2315. doi: 10.1109/TAP.2006.879196. KAFAL M, COZZA A, and PICHON L. Locating multiple soft faults in wire networks using an alternative DORT implementation[J]. IEEE Transactions on Instrumentation Measurement, 2016, 65(2): 399-406. doi: 10.1109/TIM.2015. 2498559. GELAT P, HAAR G T, and SAFFARI N. An assessment of the DORT method on simple scatterers using boundary element modelling[J]. Physics in Medicine and Biology, 2015, 60(9): 3715-3730. doi: 10.1088/0031-9155/60/9/3715. LEV-ARI H and DEVANEY A J. The time reversal techniques reinterpreted: subspace-based signal processing for multistatic target location[C]. Sensor Array Multichannel Signal Processing Workshop, Cambridge, MA, USA, 2000: 509513. doi: 10.1109/SAM.2000.878061. YAVUZ M E and TEIXEIRA F L. On the sensitivity of time-reversal imaging techniques to model perturbations[J]. IEEE Transactions on Antennas Propagation, 2008, 56(3): 834-843. doi: 10.1109/TAP.2008.916933. ISLAM M S and KAABOUCH N. Evaluation of TR-MUSIC algorithm efficiency in detecting breast microcalcifications[C]. IEEE International Conference on Electro/Information Technology, DeKalb, IL, USA, 2015: 617-620. doi: 10.1109/EIT. 2015.7293406. He J and YUAN F G. Lamb waves based fast subwavelength imaging using a DORT-MUSIC algorithm[C]. American Institute of Physics Conference Series, Minneapolis, MN, USA, 2016,1706(1): 1103-1113. BORCEA L. Interferometric imaging and time reversal in random media[J]. Inverse Problem, 2003, 18(5): 1247-1279. doi: 10.1007/978-3-540-70529-1_157. SCHOLZ B. Towards virtual electrical breast biopsy: Space-frequency MUSIC for trans-admittance data[J]. IEEE Transactions on Medical Imaging, 2002, 21(6): 588-595. doi: 10.1109/TMI.2002.800609. PETROLIS R, RAMONAIT R, JANCIAUSKAS D, et al. Digital imaging of colon tissue: Method for evaluation of inflammation severity by spatial frequency features of the histological images[J]. Diagnostic Pathology, 2015, 10(1): 1-10. doi: 10.1186/s13000-015-0389-7. CUCCIA D J, BEVILACQUA F, DURKIN A J, et al. Modulated imaging: Quantitative analysis and tomography of turbid media in the spatial-frequency domain[J]. Optics Letters, 2005,30(11): 1354-1356. doi: 10.1364/OL.30.001354. -
計(jì)量
- 文章訪問(wèn)數(shù): 1196
- HTML全文瀏覽量: 128
- PDF下載量: 481
- 被引次數(shù): 0