一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于快速地標(biāo)采樣的大規(guī)模譜聚類算法

葉茂 劉文芬

葉茂, 劉文芬. 基于快速地標(biāo)采樣的大規(guī)模譜聚類算法[J]. 電子與信息學(xué)報(bào), 2017, 39(2): 278-284. doi: 10.11999/JEIT160260
引用本文: 葉茂, 劉文芬. 基于快速地標(biāo)采樣的大規(guī)模譜聚類算法[J]. 電子與信息學(xué)報(bào), 2017, 39(2): 278-284. doi: 10.11999/JEIT160260
YE Mao, LIU Wenfen. Large Scale Spectral Clustering Based on Fast Landmark Sampling[J]. Journal of Electronics & Information Technology, 2017, 39(2): 278-284. doi: 10.11999/JEIT160260
Citation: YE Mao, LIU Wenfen. Large Scale Spectral Clustering Based on Fast Landmark Sampling[J]. Journal of Electronics & Information Technology, 2017, 39(2): 278-284. doi: 10.11999/JEIT160260

基于快速地標(biāo)采樣的大規(guī)模譜聚類算法

doi: 10.11999/JEIT160260
基金項(xiàng)目: 

國(guó)家973計(jì)劃(2012CB315905), 國(guó)家自然科學(xué)基金(61502527, 61379150)

Large Scale Spectral Clustering Based on Fast Landmark Sampling

Funds: 

The National 973 Program of China (2012CB315905), The National Natural Science Foundation of China (61502527, 61379150)

  • 摘要: 為避免傳統(tǒng)譜聚類算法高復(fù)雜度的應(yīng)用局限,基于地標(biāo)表示的譜聚類算法利用地標(biāo)點(diǎn)與數(shù)據(jù)集各點(diǎn)間的相似度矩陣,有效降低了譜嵌入的計(jì)算復(fù)雜度。在大數(shù)據(jù)集情況下,現(xiàn)有的隨機(jī)抽取地標(biāo)點(diǎn)的方法會(huì)影響聚類結(jié)果的穩(wěn)定性,k均值中心點(diǎn)方法面臨收斂時(shí)間未知、反復(fù)讀取數(shù)據(jù)的問(wèn)題。該文將近似奇異值分解應(yīng)用于基于地標(biāo)點(diǎn)的譜聚類,設(shè)計(jì)了一種快速地標(biāo)點(diǎn)采樣算法。該算法利用由近似奇異向量矩陣行向量的長(zhǎng)度計(jì)算的抽樣概率來(lái)進(jìn)行抽樣,同隨機(jī)抽樣策略相比,保證了聚類結(jié)果的穩(wěn)定性和精度,同k均值中心點(diǎn)策略相比降低了算法復(fù)雜度。同時(shí)從理論上分析了抽樣結(jié)果對(duì)原始數(shù)據(jù)的信息保持性,并對(duì)算法的性能進(jìn)行了實(shí)驗(yàn)驗(yàn)證。
  • 何清, 李寧, 羅文娟, 等. 大數(shù)據(jù)下的機(jī)器學(xué)習(xí)算法綜述[J]. 模式識(shí)別與人工智能, 2014, 27(4): 327-336.
    HE Qing, LI Ning, LUO Wenjuan, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4): 327-336.
    DING S, JIA H, ZHANG L, et al. Research of semi-supervised spectral clustering algorithm based on pairwise constraints[J]. Neural Computing and Applications, 2014, 24(1): 211-219. doi: 10.1007/s00521-012-1207-8.
    NG A Y, JORDAN M I, and WEISS Y. On spectral clustering: Analysis and an algorithm[C]. Neural Information Processing Systems: Natural and Synthetic, Vancouver, Canada, 2001: 849-856.
    FOWLKES C, BELONGIE S, CHUNG F, et al. Spectral grouping using the Nystrom method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225. doi: 10.1109/TPAMI.2004.1262185.
    LI M, KWOK J T, and LU B L. Making large-scale Nystrm approximation possible[C]. Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 2010: 631-638.
    LI M, BI W, KWORK J T, et al. Large-scale Nystrm kernel matrix approximation using randomized SVD[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(1): 152-164. doi: 10.1109/TNNLS.2014.2359798.
    丁世飛, 賈洪杰, 史忠植. 基于自適應(yīng)Nystrm 采樣的大數(shù)據(jù)譜聚類算法[J]. 軟件學(xué)報(bào), 2014, 25(9): 2037-2049. doi: 10.13328/j.cnki.jos.004643.
    DING Shifei, JIA Hongjie, and SHI Zhongzhi. Spectral clustering algorithm based on adaptive Nystrm sampling for big data analysis[J]. Journal of Software, 2014, 25(9): 2037-2049. doi: 10.13328/j.cnki.jos.004643.
    YAN D, HUANG L, and JORDAN M I. Fast approximate spectral clustering[C]. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 2009: 907-916. doi: 10.1145/1557019.1557118.
    CHEN X and CAI D. Large scale spectral clustering with landmark-based representation[C]. Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 2011: 313-318.
    CAI D and CHEN X. Large scale spectral clustering via landmark-based sparse representation[J]. IEEE Transactions on Cybernetics, 2015, 45(8): 1669-1680. doi: 10.1109/TCYB. 2014.2358564.
    BOUTSIDIS C, ZOUZIAS A, MAHONEY M W, et al. Randomized dimensionality reduction for-means clustering[J]. IEEE Transactions on Information Theory, 2015, 61(2): 1045-1062. doi: 10.1109/TIT.2014.2375327.
    COHEN M, ELDER S, MUSCO C, et al. Dimensionality reduction for k-means clustering and low rank approximation[C]. Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, Portland, OR, USA, 2015: 163-172. doi: 10.1145/2746539.2746569.
    KHOA N L D and CHAWLA S. A scalable approach to spectral clustering with SDD solvers[J]. Journal of Intelligent Information Systems, 2015, 44(2): 289-308. doi: 10.1007/ s10844-013-0285-0.
    FRIEZE A, KANNAN R, and VEMPALA S. Fast Monte-Carlo algorithms for finding low-rank approximations[C]. Proceedings of the 39th Annual Symposium on Foundations of Computer Science, Palo Alto, California, USA, 1998: 370-378. doi: 10.1109/SFCS. 1998.743487.
    DRINEAS P, MAHONEY M W, and MUTHUKRISHNAN S. Sampling algorithms for l2 regression and applications[C]. Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, Miami, Florida, USA, 2006: 1127-1136.
    DRINES P, MAHONEY M W, and MUTHUKRISHNAN S. Subspace sampling and relative-error matrix approximation: Column-based methods[C]. 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems and 10th International Workshop on Randomization and Computation, Barcelona, Spain, 2006: 316-326. doi: 10.1007/11830924_30.
    BOUTSIDIS C, DRINEAS P, and MAGDON-ISMAIL M. Near-optimal column-based matrix reconstruction [J]. SIAM Journal on Computing, 2014, 43(2): 687-717. doi: 10.1137/12086755X.
    HALKO N, MARTINSSON P G, and TROPP J A. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions[J]. SIAM Review, 2011, 53(2): 217-288. doi: 10.1137/090771806.
    SARLOIS T. Improved approximation algorithms for large matrices via random projections[C]. Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, Berkeley, California, USA, 2006: 143-152. doi: 10.1109/FOCS.2006.37.
    CHEN W Y, SONG Y, BAI H, et al. Parallel spectral clustering in distributed systems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 568-586. doi: 10.1109/TPAMI.2010.88.
    AFAHAD A, ALSHATRI N, TARI Z, et al. A survey of clustering algorithms for big data: Taxonomy and empirical analysis[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(3): 267-279. doi: 10.1109/TETC. 2014.2330519.
    STREHL A and GHOSH J. Cluster ensemblesA knowledge reuse framework for combining multiple partitions[J]. The Journal of Machine Learning Research, 2003, 3: 583-617. doi: 10.1162/153244303321897735.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1837
  • HTML全文瀏覽量:  204
  • PDF下載量:  548
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-03-21
  • 修回日期:  2016-07-18
  • 刊出日期:  2017-02-19

目錄

    /

    返回文章
    返回