一種聯(lián)合Khatri-Rao子空間與塊稀疏壓縮感知的差分SAR層析成像方法
doi: 10.11999/JEIT160222
-
2.
(中國(guó)科學(xué)院電子學(xué)研究所微波成像技術(shù)國(guó)家級(jí)重點(diǎn)實(shí)驗(yàn)室 北京 100190) ②(中國(guó)科學(xué)院大學(xué) 北京 100049) ③(中國(guó)資源衛(wèi)星應(yīng)用中心 北京 100094)
國(guó)家發(fā)改委衛(wèi)星及應(yīng)用產(chǎn)業(yè)發(fā)展專項(xiàng)項(xiàng)目 (發(fā)改委高技[2012]2083號(hào))
Differential SAR Tomography Imaging Based on Khatri-Rao Subspace and Block Compressive Sensing
-
2.
(National Key Laboratory of Microwave Imaging Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
The National Development and Reform Commission Satellite and Application Development Projects of China [2012] 2083
-
摘要: 雖然采用壓縮感知技術(shù)(Compressive Sensing, CS)的差分SAR層析成像方法實(shí)現(xiàn)了4維空間信息的重構(gòu),但是此方法僅利用了目標(biāo)的稀疏特性并沒(méi)有考慮目標(biāo)的結(jié)構(gòu)特性,因此對(duì)同時(shí)具有稀疏特性和結(jié)構(gòu)特性的目標(biāo)進(jìn)行重構(gòu)時(shí)其性能較差。針對(duì)這一問(wèn)題,該文采用聯(lián)合Khatri-Rao子空間和塊壓縮感知(Khatri-Rao Subspace and Block Compressive Sensing, KRS-BCS),提出一種差分SAR層析成像方法。該方法依據(jù)目標(biāo)的結(jié)構(gòu)特性和重構(gòu)觀測(cè)矩陣具有的Khatri-Rao積性質(zhì),將稀疏結(jié)構(gòu)目標(biāo)的差分SAR層析成像問(wèn)題轉(zhuǎn)化為Khatri-Rao子空間下的BCS問(wèn)題,最后對(duì)目標(biāo)進(jìn)行塊稀疏的l1/l2 范數(shù)最優(yōu)化求解。相比CS差分SAR層析成像方法,該方法不僅保持了CS差分SAR層析成像方法的高分辨率特點(diǎn),而且其重構(gòu)精度更高性能更優(yōu)。仿真數(shù)據(jù)和ENVISAT星載ASAR數(shù)據(jù)以及地面GPS實(shí)測(cè)數(shù)據(jù)的試驗(yàn)結(jié)果驗(yàn)證了該方法的有效性。
-
關(guān)鍵詞:
- 差分SAR層析成像技術(shù) /
- Khatri-Rao子空間 /
- 塊壓縮感知
Abstract: While the use of differential SAR tomography based on Compressive Sensing (CS) makes it possible to reconstruct the four-dimensional information of an observed scene, the performance of the reconstruction decreases for a sparse and structural observed scene due to ignoring the structural characteristics of the observed scene. To deal with this issue, a method using differential SAR tomography based on Khatri-Rao Subspace and Block Compressive Sensing (KRS-BCS) is proposed. Using the structure information of the observed scene and Khatri-Rao product property of the reconstructed observation matrix, the proposed method changes the reconstruction of the sparse and structural observed scene into a BCS problem under Khatri-Rao Subspace, and then the KRS-BCS problem is efficiently solved with a block sparse l1/l2 norm optimization signal model. Compared with existing CS methods, the proposed KRS-BCS method not only maintains the high resolution characteristics of CS methods, but also has higher reconstruction accuracy and better performance. Simulations, ENVISAT-ASAR data and ground-based GPS data verify the effectiveness of the proposed method. -
LOMBARDINI F. Differential tomography: a new framework for SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(1): 37-44. doi: 10.1109/ TGRS.2004.838371. SERAFINO F, SOLDOVIERI F, LOMBARDINI F, et al. Singular value decomposition applied to 4D SAR imaging[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Seoul, Korea, 2005: 2701-2704. 任笑真, 楊汝良. 一種基于逆問(wèn)題的差分干涉SAR層析成像方法[J]. 電子與信息學(xué)報(bào), 2010, 32(3): 582-586. doi: 10.3724 /SP. J.1146.2009.00259. REN Xiaozhen and YANG Ruliang. An inverse problem based approach for differential SAR tomography imaging[J]. Journal of Electronics Information Technology, 2010, 32(3): 582-586. doi: 10.3724/SP.J.1146.2009.00259. 孫希龍, 余安喜, 董臻, 等.一種差分高分辨率成像方法[J].電子與信息學(xué)報(bào), 2012, 34 (2): 273-278. doi: 10.3724/SP.J.1146. 2011.00676. SUN Xilong, YU Anxi, DONG Zhen, et al. A high resolution imaging method for differential SAR tomography[J]. Journal of Electronics Information Technology, 2012, 34(2): 273-278. doi: 10.3724/SP.J.1146.2011.00676. 吳一戎, 洪文, 張冰塵, 等. 稀疏微波成像研究進(jìn)展[J]. 雷達(dá)學(xué)報(bào), 2014, 3(4): 384-395. doi: 10.3724/SP.J.1300.2014. 14105. WU Yirong, HONG Wen, ZHANG Bingchen, et al. Current development of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 384-395. doi: 10.3724/SP.J.1300.2014. 14105. 李少東, 楊軍, 陳文峰, 等. 基于壓縮感知理論的雷達(dá)成像技術(shù)與應(yīng)用研究進(jìn)展[J]. 電子與信息學(xué)報(bào), 2016, 38(2): 495-508. doi: 10.11999/JEIT150874. LI Shaodong, YANG Jun, CHEN Wenfeng, et al. Overview of radar imaging technique and application based on compressive sensing theory[J]. Journal of Electronics Information Technology, 2016, 38(2): 495-508. doi: 10.11999/ JEIT150874. ZHU X X and BAMLER R. Lets do the time warp: multicomponent nonlinear motion estimation in differential SAR tomography[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 735-739. doi: 10.1109/LGRS.2010. 2013298. REN X Z, LI Y F, and YANG R L. Four-dimensional SAR imaging scheme based on compressive sensing[J]. Progress in Electromagnetics Research B, 2012, 39(39): 225-239. doi: 10.2528/PIERB11121212. ZHU X X and BAMLER R. Supperresolving SAR tomography for multidimensional imaging of urban areas: compressive sensing-based TomoSAR inversion[J]. IEEE Signal and Processing Magazine, 2014, 31(4): 51-58. doi: 10.1109/MSP.2014.2312098. WANG Y Y, ZHU X X, and BAMLER R. An efficient tomographic inversion approach for urban mapping using meter resolution SAR image stacks[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1250-1254. doi: 10.1109 /LGRS.2013.2290833. SIDDIQUE M A, HAJNSEK I, WEGMULLER U, et al. Investigating the combined use of differential SAR tomography and PSI for spatio-temporal inversion[C]. Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 2015: 1-4. DONOHO D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582. ZHU X X and BAMLER R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247-258. doi: 10.1109/TGRS.2011.2160183. 李烈辰, 李道京. 基于壓縮感知的連續(xù)場(chǎng)景稀疏陣列SAR三維成像[J]. 電子與信息學(xué)報(bào), 2014, 36(9): 2166-2172. doi: 10.3724/SP.J.1146.2013.01645. LI Liechen and LI Daojing. Sparse array 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics Information Technology, 2014, 36(9): 2166-2172. doi: 10.3724/SP.J.1146.2013.01645. 張冰塵, 王萬(wàn)影, 畢輝, 等. 基于壓縮多信號(hào)分類算法的森林區(qū)域極化SAR層析成像[J]. 電子與信息學(xué)報(bào), 2015, 37(3): 625-630. doi: 10.11999/JEIT140584. ZHANG Bingchen, WANG Wanying, BI Hui, et al. Polarimetric SAR tomography for forested areas based on compressive multiple signal classification[J]. Journal of Electronics Information Technology, 2015, 37(3): 625-630. doi: 10.11999/JEIT140584. 廖明生, 魏戀歡, 汪紫蕓, 等. 壓縮感知在城區(qū)高分辨率SAR層析成像中的應(yīng)用[J]. 雷達(dá)學(xué)報(bào), 2015, 4(2): 124-129. doi: 10.12000/JR15031. LIAO Mingsheng, WEI Lianhuan, WANG Ziyun, et al. Compressive sensing in high-resolution 3D SAR tomography of urban scenarios[J]. Journal of Radars, 2015, 4(2): 124-129. doi: 10.12000/JR15031. 王愛(ài)春, 向茂生. 基于塊壓縮感知的SAR層析成像方法[J]. 雷達(dá)學(xué)報(bào), 2016, 5(1): 57-64. doi: 10.12000/JR16006. WANG Aichun and XIANG Maosheng. SAR tomography based on block compressive sensing[J]. Journal of Radars, 2016, 5(1): 157-64. doi: 10.12000/JR16006. ELDAR Y C, KUPPINGER P, and BOLCSKEI H. Block- sparse signals: Uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054. doi: 10.1109/TSP.2010.2044837. 李廉林, 周小陽(yáng), 崔鐵軍. 結(jié)構(gòu)化信號(hào)處理理論和方法的研究進(jìn)展[J]. 雷達(dá)學(xué)報(bào), 2015, 4(5): 491-502. doi: 10.12000/ JR15111. LI Lianlin, ZHOU Xiaoyang, and CUI Tiejun. Perspectives on theories and methods of structural signal processing[J]. Journal of Radars, 2015, 4(5): 491-502. doi: 10.12000/ JR15111. SHERVASHIDZE N and BACH F. Learning the structure for structured sparsity[J]. IEEE Transactions on Signal Processing, 2015, 63(18): 4894-4902. doi: 10.1109/TSP.2015. 2446432. TERADA T, NISHIMURA T, OGAWA Y, et al. DOA estimation for multi-band signal sources using compressed sensing techniques with Kratri-Rao processing[J]. IEITC Transactions on Communications, 2014, 97(10): 2110-2117. doi: 10.1587/transcom.E97.B.2110. -
計(jì)量
- 文章訪問(wèn)數(shù): 1364
- HTML全文瀏覽量: 132
- PDF下載量: 540
- 被引次數(shù): 0