基于獨(dú)立向量分析的腦電信號(hào)中肌電偽跡的去除方法
doi: 10.11999/JEIT160209
-
1.
(合肥工業(yè)大學(xué)生物醫(yī)學(xué)工程系 合肥 230009) ②(安徽醫(yī)科大學(xué)醫(yī)學(xué)心理學(xué)系 合肥 230032)
國(guó)家自然科學(xué)基金(61501164, 81571760)
Removal of Muscle Artifact from EEG Data Based on Independent Vector Analysis
-
1.
(Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China)
-
2.
(Department of Medical Psychology, Anhui Medical University, Hefei 230032, China)
The National Natural Science Foundation of China (61501164, 81571760)
-
摘要: 腦電數(shù)據(jù)經(jīng)常被各種電生理信號(hào)偽跡所污染。在常見(jiàn)偽跡中,肌電偽跡特別難以去除。文獻(xiàn)中最常用的方法包括諸如獨(dú)立分量分析(Independent Component Analysis, ICA)和典型相關(guān)分析(Canonical Correlation Analysis, CCA)等盲源分離技術(shù)。該文首次提出一種基于獨(dú)立向量分析(Independent Vector Analysis, IVA)的新方法,用以去除腦電中的肌電偽跡。IVA同時(shí)使用高階統(tǒng)計(jì)量和二階統(tǒng)計(jì)量,因此該方法能夠充分利用肌電偽跡的非高斯性和弱相關(guān)性,兼具ICA方法和CCA方法的優(yōu)勢(shì)。實(shí)驗(yàn)表明,使用IVA方法可以在保留腦電成份的同時(shí)極大抑制肌電偽跡,效果顯著優(yōu)于ICA法和CCA法。
-
關(guān)鍵詞:
- 腦電 /
- 肌電偽跡 /
- 盲源分離 /
- 獨(dú)立向量分析
Abstract: ElectroEncephaloGram (EEG) data are often contaminated by various electrophysiological artifacts. Among all these artifacts, removing the ones related to muscle activity is particularly challenging. In past studies, Independent Component Analysis (ICA) and Canonical Correlation Analysis (CCA), as Blind Source Separation (BSS) methods, are widely used. In this work, a new method for muscle artifact removal in EEG data using Independent Vector Analysis (IVA) is proposed. IVA utilizes both the higher-order and second-order statistics, so that it makes full use of non-Gaussianity and weak autocorrelation of the muscle artifact and has the advantages of both ICA and CCA. The proposed method is examined on a number of simulated data sets and is shown to have better performance than ICA and CCA. The proposed IVA method is able to largely suppress muscle activity and meanwhile well preserve the underlying EEG activity. -
URRESTARAZU E, IRIARTE J, ALEGRE M, et al. Independent component analysis removing artifacts in ictal recordings[J]. Epilepsia, 2004, 45(9) 1071-1078. doi: 10.1111/ j.0013-9580.2004.12104.x. MCMENAMIN B W, SHACKMAN A J, GREISCHAR L L, et al. Electromyogenic artifacts and electroencephalographic inferences revisited[J]. Neuroimage, 2011, 54(1): 4-9. doi: 10.1016/j.neuroimage.2010.07.057. 閆錚, 高小榕, 應(yīng)俊. 基于認(rèn)知功能連接的信息流增益計(jì)算方法及應(yīng)用[J]. 電子與信息學(xué)報(bào), 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146.2013.02019. YAN Z, GAO X R, and YING J. The flow gain methods and applications based on cognition functional connectivity[J]. Journal of Electronics Information Technology, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146.2013.02019. 呂俊, 謝勝利, 章晉龍. 腦-機(jī)接口中基于ERS/ERD的自適應(yīng)空間濾波算法[J]. 電子與信息學(xué)報(bào), 2009, 31(2): 314-318. L J, XIE S L, and ZHANG J L. Adaptive spatial filter based on ERD/ERS for brain-computer interfaces[J]. Journal of Electronics Information Technology, 2009, 31(2): 314-318. 吳明權(quán), 李海峰, 馬琳. 單通道腦電信號(hào)中眼電干擾的自動(dòng)分離方法[J]. 電子與信息學(xué)報(bào), 2015, 37(2): 367-372. doi: 10.11999/JEIT140602. WU M Q, LI H F, and MA L. Automatic electrooculogram separation method for single channel electroencephalogram signals[J]. Journal of Electronics Information Technology, 2015, 37(2): 367-372. doi: 10.11999/JEIT140602. DE CLERCQ W, VERGULT A, VANRUMSTE B, et al. Canonical analysis applied to remove muscle artifacts from the electroencephalogram[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2583-2587. doi: 10. 1109/TBME.2006.879459. ALBERA L, KACHENOURA A, COMON P, et al. ICA- based EEG denoising: a comparative analysis of fifteen methods[J]. Bulletin of the Polish Academy of Sciences- Technical Sciences, 2012, 60(3): 407-418. doi: 10.2478/ v10175-012-0052-3. URIGUEN J A and GARCIA-ZAPIRAIN B. EEG artifact removal state-of-the-art and guidelines[J]. Journal of Neural Engineering, 2015, 12(3): 031001. doi: 10.1088/1741-2560 /12/3/031001. WINKER I, BRANDL S, HORN F, et al. Robust artifactual independent component classification for BCI practitioners [J]. Journal of Neural Engineering, 2014, 11(3): 035013. doi: 10.1088/1741-2560/11/3/035013. SHACKMAN A J, MCMENAMIN B W, Slagter H A, et al. Electromyogenic artifacts and electroencephalographic inferences[J]. Brain Topography, 2009, 22(1): 7-12. doi: 10.1007/s10548-009-0079-4. NAM H, YIM T G, HAN S K, et al. Independent component analysis of ictal EEG in medial temporal lobe epilepsy[J]. Epilepsia, 2002, 43(2): 160-164. doi: 10.1046/j.1528-1157. 2002.23501.x. GAO J F, ZHENG C X, and WANG P. Online removal of muscle artifact from electroencephalogram signals based on canonical correlation analysis[J]. Clinical EEG and Neuroscience, 2010, 41(1): 53-59. doi: 10.1177/155005941 004100111. MOWLA M R, NG S C, ZILANY M S A, et al. Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising[J]. Biomedical Signal Processing and Control, 2015, 22: 111-118. doi: 10.1016/j.bspc.2015.06.009. VERGULT A, DE CLERCQ W, PALMINI A, et al. Improving the interpretation of ictal scalp EEG: BSSCCA algorithm for muscle artifact removal[J]. Epilepsia, 2007, 48(5): 950-958. doi: 10.1111/j.1528-1167.2007.01031.x. VOS D M, RIES S, VANDEPERREN K, et al. Removal of muscle artifacts from EEG recordings of spoken language production[J]. Neuroinformatics, 2010, 8(2): 135-150. doi: 10.1007/s12021-010-9071-0. CHEN X, LIU A P, PENG H, et al. A preliminary study of muscular artifacts cancellation in single-channel EEG[J]. Sensors, 14(10): 18370-18389. doi: 10.3390/s141018370. ANDERSON M, ADALI T, and LI X L. Joint blind source separation with multivariate Gaussian model: Algorithms and performance analysis[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1672-1683. doi: 10.1109/TSP.2011. 2181836. ANDERSON M, FU G S, PHLYPO R, et al. Independent vector analysis: Identification conditions and performance bounds[J]. IEEE Transactions on Signal Processing, 2014, 62(17): 4399-4410. doi: 10.1109/TSP.2014.2333554. BELOUCHRANI A, ABED-MERAIM K, CARDOSO J F, et al. A blind source separation technique using second order statistics[J]. IEEE Transacations on Signal Processing, 1997, 45(2): 434-444. doi: 10.1109/78.554307. CARDOSO J F. High-order contrasts for independent component analysis[J]. Neural Computation, 1999, 11(1): 157-192. doi: 10.1162/089976699300016863. HOTELLING H. Relations between two sets of variates[J]. Biometrika, 1936, 28: 321-377. doi: 10.2307/2333955. LIN Z L, ZHANG C S, WU W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2610-2614. doi: 10.1109/TBME.2006.886577. GOLDBERGER A L, AMARAL L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215-e220. doi: 10.1161/01.CIR. 101.23.e215. -
計(jì)量
- 文章訪問(wèn)數(shù): 1902
- HTML全文瀏覽量: 224
- PDF下載量: 855
- 被引次數(shù): 0