一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

基于獨(dú)立向量分析的腦電信號(hào)中肌電偽跡的去除方法

陳強(qiáng) 陳勛 余鳳瓊

陳強(qiáng), 陳勛, 余鳳瓊. 基于獨(dú)立向量分析的腦電信號(hào)中肌電偽跡的去除方法[J]. 電子與信息學(xué)報(bào), 2016, 38(11): 2840-2847. doi: 10.11999/JEIT160209
引用本文: 陳強(qiáng), 陳勛, 余鳳瓊. 基于獨(dú)立向量分析的腦電信號(hào)中肌電偽跡的去除方法[J]. 電子與信息學(xué)報(bào), 2016, 38(11): 2840-2847. doi: 10.11999/JEIT160209
CHEN Qiang, CHEN Xun, YU Fengqiong. Removal of Muscle Artifact from EEG Data Based on Independent Vector Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2840-2847. doi: 10.11999/JEIT160209
Citation: CHEN Qiang, CHEN Xun, YU Fengqiong. Removal of Muscle Artifact from EEG Data Based on Independent Vector Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2840-2847. doi: 10.11999/JEIT160209

基于獨(dú)立向量分析的腦電信號(hào)中肌電偽跡的去除方法

doi: 10.11999/JEIT160209
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61501164, 81571760)

Removal of Muscle Artifact from EEG Data Based on Independent Vector Analysis

Funds: 

The National Natural Science Foundation of China (61501164, 81571760)

  • 摘要: 腦電數(shù)據(jù)經(jīng)常被各種電生理信號(hào)偽跡所污染。在常見(jiàn)偽跡中,肌電偽跡特別難以去除。文獻(xiàn)中最常用的方法包括諸如獨(dú)立分量分析(Independent Component Analysis, ICA)和典型相關(guān)分析(Canonical Correlation Analysis, CCA)等盲源分離技術(shù)。該文首次提出一種基于獨(dú)立向量分析(Independent Vector Analysis, IVA)的新方法,用以去除腦電中的肌電偽跡。IVA同時(shí)使用高階統(tǒng)計(jì)量和二階統(tǒng)計(jì)量,因此該方法能夠充分利用肌電偽跡的非高斯性和弱相關(guān)性,兼具ICA方法和CCA方法的優(yōu)勢(shì)。實(shí)驗(yàn)表明,使用IVA方法可以在保留腦電成份的同時(shí)極大抑制肌電偽跡,效果顯著優(yōu)于ICA法和CCA法。
  • URRESTARAZU E, IRIARTE J, ALEGRE M, et al. Independent component analysis removing artifacts in ictal recordings[J]. Epilepsia, 2004, 45(9) 1071-1078. doi: 10.1111/ j.0013-9580.2004.12104.x.
    MCMENAMIN B W, SHACKMAN A J, GREISCHAR L L, et al. Electromyogenic artifacts and electroencephalographic inferences revisited[J]. Neuroimage, 2011, 54(1): 4-9. doi: 10.1016/j.neuroimage.2010.07.057.
    閆錚, 高小榕, 應(yīng)俊. 基于認(rèn)知功能連接的信息流增益計(jì)算方法及應(yīng)用[J]. 電子與信息學(xué)報(bào), 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146.2013.02019.
    YAN Z, GAO X R, and YING J. The flow gain methods and applications based on cognition functional connectivity[J]. Journal of Electronics Information Technology, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146.2013.02019.
    呂俊, 謝勝利, 章晉龍. 腦-機(jī)接口中基于ERS/ERD的自適應(yīng)空間濾波算法[J]. 電子與信息學(xué)報(bào), 2009, 31(2): 314-318.
    L J, XIE S L, and ZHANG J L. Adaptive spatial filter based on ERD/ERS for brain-computer interfaces[J]. Journal of Electronics Information Technology, 2009, 31(2): 314-318.
    吳明權(quán), 李海峰, 馬琳. 單通道腦電信號(hào)中眼電干擾的自動(dòng)分離方法[J]. 電子與信息學(xué)報(bào), 2015, 37(2): 367-372. doi: 10.11999/JEIT140602.
    WU M Q, LI H F, and MA L. Automatic electrooculogram separation method for single channel electroencephalogram signals[J]. Journal of Electronics Information Technology, 2015, 37(2): 367-372. doi: 10.11999/JEIT140602.
    DE CLERCQ W, VERGULT A, VANRUMSTE B, et al. Canonical analysis applied to remove muscle artifacts from the electroencephalogram[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2583-2587. doi: 10. 1109/TBME.2006.879459.
    ALBERA L, KACHENOURA A, COMON P, et al. ICA- based EEG denoising: a comparative analysis of fifteen methods[J]. Bulletin of the Polish Academy of Sciences- Technical Sciences, 2012, 60(3): 407-418. doi: 10.2478/ v10175-012-0052-3.
    URIGUEN J A and GARCIA-ZAPIRAIN B. EEG artifact removal state-of-the-art and guidelines[J]. Journal of Neural Engineering, 2015, 12(3): 031001. doi: 10.1088/1741-2560 /12/3/031001.
    WINKER I, BRANDL S, HORN F, et al. Robust artifactual independent component classification for BCI practitioners [J]. Journal of Neural Engineering, 2014, 11(3): 035013. doi: 10.1088/1741-2560/11/3/035013.
    SHACKMAN A J, MCMENAMIN B W, Slagter H A, et al. Electromyogenic artifacts and electroencephalographic inferences[J]. Brain Topography, 2009, 22(1): 7-12. doi: 10.1007/s10548-009-0079-4.
    NAM H, YIM T G, HAN S K, et al. Independent component analysis of ictal EEG in medial temporal lobe epilepsy[J]. Epilepsia, 2002, 43(2): 160-164. doi: 10.1046/j.1528-1157. 2002.23501.x.
    GAO J F, ZHENG C X, and WANG P. Online removal of muscle artifact from electroencephalogram signals based on canonical correlation analysis[J]. Clinical EEG and Neuroscience, 2010, 41(1): 53-59. doi: 10.1177/155005941 004100111.
    MOWLA M R, NG S C, ZILANY M S A, et al. Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising[J]. Biomedical Signal Processing and Control, 2015, 22: 111-118. doi: 10.1016/j.bspc.2015.06.009.
    VERGULT A, DE CLERCQ W, PALMINI A, et al. Improving the interpretation of ictal scalp EEG: BSSCCA algorithm for muscle artifact removal[J]. Epilepsia, 2007, 48(5): 950-958. doi: 10.1111/j.1528-1167.2007.01031.x.
    VOS D M, RIES S, VANDEPERREN K, et al. Removal of muscle artifacts from EEG recordings of spoken language production[J]. Neuroinformatics, 2010, 8(2): 135-150. doi: 10.1007/s12021-010-9071-0.
    CHEN X, LIU A P, PENG H, et al. A preliminary study of muscular artifacts cancellation in single-channel EEG[J]. Sensors, 14(10): 18370-18389. doi: 10.3390/s141018370.
    ANDERSON M, ADALI T, and LI X L. Joint blind source separation with multivariate Gaussian model: Algorithms and performance analysis[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1672-1683. doi: 10.1109/TSP.2011. 2181836.
    ANDERSON M, FU G S, PHLYPO R, et al. Independent vector analysis: Identification conditions and performance bounds[J]. IEEE Transactions on Signal Processing, 2014, 62(17): 4399-4410. doi: 10.1109/TSP.2014.2333554.
    BELOUCHRANI A, ABED-MERAIM K, CARDOSO J F, et al. A blind source separation technique using second order statistics[J]. IEEE Transacations on Signal Processing, 1997, 45(2): 434-444. doi: 10.1109/78.554307.
    CARDOSO J F. High-order contrasts for independent component analysis[J]. Neural Computation, 1999, 11(1): 157-192. doi: 10.1162/089976699300016863.
    HOTELLING H. Relations between two sets of variates[J]. Biometrika, 1936, 28: 321-377. doi: 10.2307/2333955.
    LIN Z L, ZHANG C S, WU W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2610-2614. doi: 10.1109/TBME.2006.886577.
    GOLDBERGER A L, AMARAL L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215-e220. doi: 10.1161/01.CIR. 101.23.e215.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1902
  • HTML全文瀏覽量:  224
  • PDF下載量:  855
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-03-07
  • 修回日期:  2016-07-18
  • 刊出日期:  2016-11-19

目錄

    /

    返回文章
    返回