基于隨機(jī)調(diào)頻步進(jìn)信號(hào)的高分辨ISAR成像方法
doi: 10.11999/JEIT160177
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61671469)
High Resolution ISAR Imaging Method Based on Random Chirp Frequency-stepped Signal
Funds:
The National Natural Science Foundation of China (61671469)
-
摘要: 為充分利用隨機(jī)調(diào)頻步進(jìn)逆合成孔徑雷達(dá)回波所具有的聯(lián)合稀疏特征,提高成像性能,該文提出一種基于分布式壓縮感知理論的隨機(jī)調(diào)頻步進(jìn)逆合成孔徑雷達(dá)高分辨成像方法。首先構(gòu)建隨機(jī)調(diào)頻步進(jìn)信號(hào)回波的聯(lián)合稀疏表示模型,并完成子脈沖的脈沖壓縮處理;其次,基于每組子脈沖的隨機(jī)方式(組與組之間的隨機(jī)方式不同),構(gòu)建相應(yīng)的隨機(jī)量測(cè)矩陣,獲取回波的壓縮感知信號(hào)模型,并利用分布式壓縮感知理論實(shí)現(xiàn)距離向聯(lián)合高分辨重構(gòu);最后結(jié)合回波在方位向的稀疏性,采用快速稀疏重構(gòu)算法實(shí)現(xiàn)方位向高分辨成像。理論分析和仿真結(jié)果表明由于充分利用了隨機(jī)調(diào)頻步進(jìn)信號(hào)回波的隨機(jī)性與聯(lián)合稀疏特征,所提出方法具有重構(gòu)精度高、距離向采樣率低、抗噪性能強(qiáng)等特點(diǎn)。
-
關(guān)鍵詞:
- 逆合成孔徑雷達(dá)成像 /
- 聯(lián)合稀疏模型 /
- 分布式壓縮感知 /
- 隨機(jī)調(diào)頻步進(jìn)信號(hào)
Abstract: In order to make full use of the joint sparse physical characteristics of the radar echo to improve imaging performance. A novel super resolution Inverse SAR (ISAR) imaging method based on distributed compressed sensing theory is proposed. Firstly, the joint sparse echo model of the random chirp frequency-stepped signal is built and the pulse compression processing of each sub-pulse is processed. Secondly, owing to different random patterns of each group, different measurement matrices are constructed in accordance with the random pattern of sub-pulse signal. Then the corresponding compressed sensing model of the echo is built and the supper resolution range profile is obtained via the distributed compressed sensing theory. Finally, the supper resolution inverse synthetic aperture radar image can be obtained by a fast compressed sensing reconstruction algorithm, which is used to achieve the high resolution reconstruction in azimuth direction based on the sparse features. Theoretical analysis and simulation results show that the proposed method has the characteristics of high reconstruction accuracy, low sampling rate and strong anti-noise performance. -
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. JIU Bo, LIU Hongchao, Liu Hongwei, et al. Joint ISAR imaging and cross-range scaling method based on compressive sensing with adaptive dictionary[J]. IEEE Transactions on Antennas Propagation, 2015, 63(5): 2112-2121. doi: 10.1109/TAP.2015.2409876. 田野, 張冰塵, 洪文. 基于分布式壓縮感知的重軌干涉SAR形變檢測(cè)方法與實(shí)驗(yàn)[J]. 中國(guó)科學(xué)院大學(xué)學(xué)報(bào), 2016, 33(1): 107-114. doi: 10.7523/j.issn.2095-6134.2016.01.016. TIAN Ye, ZHANG Bingchen, and HONG Wen. Deformation detection approach for repeat-pass InSAR based on distributed compressed sensing[J]. Journal of University of Chinese Academy of Sciences, 2016, 33(1): 107-114. doi: 10.7523/j.issn.2095-6134.2016.01.016. 李少東, 陳文峰, 楊軍, 等. 任意稀疏結(jié)構(gòu)的多量測(cè)向量快速稀疏重構(gòu)算法研究[J]. 電子學(xué)報(bào), 2015, 43(4): 708-715. doi: 10.396/j.issn.0372-2112.2015.04.012. LI Shaodong, CHEN Wenfeng, YANG Jun, et al. Study on the fast sparse recovery algorithm via multiple measurement vectors of arbitrary sparse structure[J]. Acta Electronica Sinica, 2015, 43(4): 708-715. doi: 10.3969/j.issn.0372-2112. 2015.04.012. ZHANG Shunsheng, ZHANG Wei, ZONG Zhulin, et al. High-resolution bistatic ISAR imaging based on two-dimensional compressed sensing[J]. IEEE Transactions on Antennas Propagation, 2015, 63(5): 2098-2111. doi: 10.1109/TAP.2015.2408337. ERTIN E. Frequency diverse waveforms for compressive radar sensing[C]. Waveform Diversity Design Conference, Niagara Falls, Ontario, Canada, 2010: 216-219. doi: 10.1109/ WDD.2010.5592522. 孫延鵬, 王藝霖, 屈樂(lè)樂(lè). 基于貝葉斯壓縮感知的頻率步進(jìn)探地雷達(dá)成像算法[J]. 沈陽(yáng)航空航天大學(xué)學(xué)報(bào), 2015, 32(5): 68-73. doi: 10.3969/j.issn.2095-1248.2015.05.010. SUN Yanpeng, WANG Yilin, and QU Lele. Stepped- frequency GPR imaging algorithm based on Bayesian compressive sensing[J]. Journal of Shenyang Aerospace University, 2015, 32(5): 68-73. doi: 10.3969/j.issn.2095-1248. 2015.05.010. 邵鵬, 邢孟道, 李學(xué)仕, 等. 一種新的頻域帶寬合成的斜視高分辨SAR成像方法[J]. 西安電子科技大學(xué)學(xué)報(bào), 2015, 42(2): 28-34. doi: 10.3969/j.issn.1001-2400.2015.02.005. SHAO Peng, XING Mengdao, LI Xueshi, et al. Squinted high resolution SAR based on the frequency synthetic bandwidth[J]. Journal of Xidian University, 2015, 42(4): 28-34. doi: 10.3969/j.issn.1001-2400.2015.02.005. SEYFRIED D and SCHOEBEL J. Stepped-frequency radar signal processing[J]. Journal of Applied Geophysics, 2015, 112: 42-51. 王虹現(xiàn), 梁毅, 邢孟道, 等. 基于稀疏線性調(diào)頻步進(jìn)信號(hào)的ISAR成像[J]. 中國(guó)科學(xué):信息科學(xué), 2011, 41(12): 1529-1540. doi: 1007/s11432-011-4353-1. WANG Hongxian, LIANG Yi, XING Mengdao, et al. ISAR imaging via sparse frequency-stepped chirp signal[J]. SCIENTIA SINICA Informationis, 2011, 41(12): 1529-1540. doi: 1007/s11432-011-4353-1. ZHU Feng, ZHANG Qun, LUO Ying, et al. A novel cognitive ISAR imaging method with random stepped frequency chirp signal[J]. SCIECE CHINA Information Sciences, 2012, 55(8): 19101924. doi: 10.1007/s11432-012-4629-0. ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. High- resolution ISAR imaging with sparse stepped-frequency waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4630-4651. doi: 10.1109/TGRS.2011. 2151865. 張榆紅, 邢孟道, 徐剛. 基于稀疏孔徑的聯(lián)合稀疏約束干涉ISAR機(jī)動(dòng)目標(biāo)三維成像[J]. 電子與信息學(xué)報(bào), 2015, 37(9): 2151-2157. doi: 10.11999/JEIT150125. ZHANG Yuhong, XING Mengdao, and XU Gang. Joint sparsity constraint interferometric ISAR Imaging for 3-D geometry of maneuvering targets with sparse apertures[J]. Journal of Electronics Information Technology, 2015, 37(9): 2151-2157. doi: 10.11999/JEIT150125. 陳一暢, 張群姍, 陳校平, 等. 多重測(cè)量矢量模型下的稀疏步進(jìn)頻率SAR成像算法[J]. 電子與信息學(xué)報(bào), 2014, 36(12): 2986-2993. doi: 10.3724/SP.J.1146.2013.01831. CHEN Yichang, ZHANG Qunshan, CHEN Xiaoping, et al. An imaging algorithm of sparse stepped frequency SAR based on multiple measurement vectors model[J]. Journal of Electronics Information Technology, 2014, 36(12): 2986-2993. doi: 10.3724/SP.J.1146.2013.01831. 吳敏, 張磊, 邢孟道, 等. 基于分布式壓縮感知的全極化雷達(dá)超分辨成像[J]. 電波科學(xué)學(xué)報(bào), 2015, 30(1): 29-36. doi: 10.13443/j.cjors.2014041101. WU Min, ZHANG Lei, XING Mengdao, et al. Full polarization super-resolution radar imaging algorithm based on distributed compressive sensing[J]. Chinese Journal of Radio Science, 2015, 30(1): 29-36. doi: 10.13443/j.cjors. 2014041101. DUARTE M F, SARVOTHAM S, BARON D, et al. Distributed compressed sensing of jointly sparse signals[C]. Signals, Systems Computers, Asilomar, CA, USA, 2005: 1537-1541. doi: 10.1109/ACSSC.2005.1600024. 丁鷺飛, 耿富錄, 陳建春. 雷達(dá)原理(第5版)[M]. 北京: 電子工業(yè)出版社, 2014: 1-2. DING Lufei, GENG Fulu, and CHEN Jianchun. Radar Principles(5th)[M]. Beijing: Publishing House of Electronics Industry, 2014: 1-2. SUNDMAN D. Greedy algorithms for distributed compressed sensing[D]. [Ph.D. dissertation], KTH Royal Institute of Technology, 2014: 99-116. DUARTE M F and ELDAR Y C. Structured compressed sensing: from theory to applications[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4053-4083. doi: 10.1109/ TSP.2011.2161982. DAVIES M E and ELDAR Y C. Rank awareness in joint sparse recovery[J]. IEEE Transactions on Information Theory, 2010, 58(2): 1135-1146. doi: 10.1109/TIT.2011.2173722. 張磊. 高分辨SAR/ISAR成像及誤差補(bǔ)償技術(shù)研究[D]. [博士論文], 西安電子科技大學(xué), 2012. ZHANG Lei. Study on high resolution SAR/ISAR imaging and error correction[D]. [Ph.D. dissertation], Xidian University, 2012. HUANG Yajing, WANG Xuezhi, LI Xiangli, et al. Inverse synthetic aperture radar imaging using frame theory[J]. IEEE Transactions on Signal Processing, 2012, 60(10): 5191-5200. doi: 10.1109/TSP.2012.2208107. -
計(jì)量
- 文章訪問(wèn)數(shù): 1348
- HTML全文瀏覽量: 123
- PDF下載量: 359
- 被引次數(shù): 0