Contrast Modification Forensic Algorithm Based on Superpixel and Histogram of Run Length
Funds:
Tianjin Natural Science Foundation (16JCYBJC 15700)
-
摘要: 該文提出一種基于超像素和游程直方圖的圖像對比度修改檢測取證算法。算法首先對圖像進行超像素分割,并提取每個分割區(qū)域的游程直方圖特征值,然后將不同方向的特征值進行融合,并進行歸一化處理;再計算處理后的特征值數值突變量;最后將區(qū)域的數值突變量用支持向量機(SVM)進行分類識別。實驗結果表明,和現有的一些算法相比,該文提出的算法計算復雜度低,在多種不同的測試數據庫上都具有良好的識別性能。此外,在區(qū)域篡改檢測實驗中,該算法不僅可以定位出篡改區(qū)域,還能準確地描繪出篡改區(qū)域的輪廓形狀。Abstract: A novel image forensic algorithm against contrast modification based on superpixel and histogram of run length is proposed. In the proposed algorithm, images are firstly divided by superpixel, then run length histogram features of each block are extracted, and those of different orientation are subsequently merged. After normalization of the prior features, the leaps in the histogram are calculated numerically. Lastly, the generated features of blocks are trained by Support Vector Machin (SVM) classifier. Large amounts of experiments show that, the proposed algorithm has low cost of computation complexity. And compared with some state-of-the-art algorithms, it has better performance with many test databases. Furthermore, the proposed algorithm can not only located the tempered area, but also can exactly describe the shape of tempered area.
-
駱偉祺, 黃繼武, 丘國平. 魯棒的區(qū)域復制圖像篡改檢測技術[J]. 計算機學報, 2007, 30(11): 1998-2007. LUO Weiqi, HUANG Jiwu, and QIU Guoping. Robust detection of region-duplication forgery in digital image[J]. Chinese Journal of Computers, 2007, 30(11): 1998-2007. 李曉飛, 申鉉京, 陳海鵬, 等. 基于數字簽名方式的圖像真?zhèn)舞b別算法[J]. 計算機研究與發(fā)展, 2012, 49(6): 1348-1356. LI Xiaofei, SHEN Xuanjing, CHEN Haipeng, et al. An image identification algorithm based on digital signature method[J]. Computer Research and Development, 2012, 49(6): 1348-1356. ANDALIBI M and CHANDLER D. Digital image watermarking via adaptive logo texturization[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5060-5073. CAO G, ZHAO Y, NI R, et al. Contrast enhancement-based forensics in digital images[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(3): 515-525. ARICI T, DIKBAS S, and ALTUNBASAK Y. A histogram modification framework and its application for image contrast enhancement[J]. IEEE Transactions on Image Processing, 2009, 18(9): 1921-1935. CAO G, ZHAO Y, NI R, et al. Anti-forensics of contrast enhancement in digital images[C]. 12th ACM Workshop on Multimedia and Security, ACM, Rome, Italy, 2010: 25-34. STAMM M C and LIU K J R. Forensic detection of image manipulation using statistical intrinsic fingerprints[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(3): 492-506. DE ALESSIA Rosa, FONTANI Marco, MASSAI Matteo, et al. Second-order statistics analysis to cope with contrast enhancement counter-forensics[J]. IEEE Signal Processing Letters, 2015, 22(8): 1132-1136. LIN X, LI C, and HU Y. Exposing image forgery through the detection of contrast enhancement[C]. 2013 20th IEEE International Conference on Image Processing (ICIP), Melbourne Australia, 2013: 4467-4471. CAO G, ZHAO Y, NI R, et al. Attacking contrast enhancement forensics in digital images[J]. Science China Information Sciences, 2014, 57(5): 1-13. SHEN J, DU Y, WANG W, et al. Lazy random walks for superpixel segmentation[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1451-1462. RADHAKRISHNA A, APPU S, KEVIN S, et al. SLIC superpixels compared to state-of-the-Art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. GOLOMB S W. Run-length encodings[J]. IEEE Transactions on Information Theory, 1966, 12(3): 317-319. TANG X. Texture information in run-length matrices[J]. IEEE Transactions on Image Processing, 1998, 7(11): 1602-1609. STAMM M C and LIU K J R. Forensic estimation and reconstruction of a contrast enhancement mapping[C]. IEEE International Conference on Acoustics Speech Signal Processing, Dallas, TX, USA 2010, 23(3): 1698-1701. YANG Liang, GAO Tiegang, XUAN Yan, et al. Contrast modification forensics algorithm based on merged weight histogram of run length[J]. International Journal of Digital Crime and Forensics, 2016, 8(2): 27-35. SHALEV S S and SREBRO N. SVM optimization: inverse dependence on training set size[C]. Proceedings of the 25th International Conference on Machine Learning, ACM, Helsinki, Finland, 2008: 928-935. SCHAEFER G and STICH M. UCID - An uncompressed color image database[C]. Storage Retrieval Methods Applications for Multimedia 2004, San Jose, CA, USA, 2003, 5307: 472-480. CHANG C and LIN C. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems Technology, 2001, 2(3): 389-396. FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874. -
計量
- 文章訪問數: 1442
- HTML全文瀏覽量: 159
- PDF下載量: 547
- 被引次數: 0