基于對比敏感度的DASH客戶端碼率選擇算法研究
doi: 10.11999/JEIT160150
-
1.
(西南交通大學(xué)信息科學(xué)與技術(shù)學(xué)院 成都 611756) ② (ECE Department, University of Massachusetts, Dartmouth, MA 02747, USA)
國家自然科學(xué)基金(61401374)
Rate Selection Algorithm of DASH Client Based on Contrast Sensitivity
-
1.
(School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China)
-
2.
(ECE Department, University of Massachusetts, Dartmouth, MA 02747, USA)
The National Natural Science Foundation of China (61401374)
-
摘要: 基于帶寬估算的碼率選擇算法具有帶寬利用率高的優(yōu)點,但是同時也存在容易受網(wǎng)絡(luò)波動影響造成計算出的目標(biāo)碼率出現(xiàn)瞬時峰值而造成帶寬浪費(fèi)的問題。針對于此,該文提出一種基于人眼對比敏感度特征的碼率選擇算法,在客戶端利用人眼對比敏感度模型計算當(dāng)前觀看條件下人眼截止空間頻率,選擇服務(wù)器中和截止空間頻率差的絕對值最小視頻分片對應(yīng)的碼率作為目標(biāo)碼率。和基于帶寬估算選擇目標(biāo)碼率的方法進(jìn)行對比實驗,測試二者在不同視角內(nèi)計算的目標(biāo)碼率,得到兩者的碼率計算結(jié)果階梯圖。實驗結(jié)果表明,在視角為5到15情況下,所提方法較帶寬估計方法在確保視頻效果前提下能夠有效節(jié)約帶寬。
-
關(guān)鍵詞:
- 對比敏感度 /
- 截止空間頻率 /
- DASH(Dynamic Adaptive Streaming over Http) /
- 碼率選擇
Abstract: One significant advantage of rate selection algorithms based on bandwidth estimation is the high bandwidth utilization rate. They are, however, vulnerable to network bandwidth fluctuations, leading to appearance of rate instantaneous peak value and hence wasting unnecessary bandwidth consumption. To tackle the problem above, this paper proposes a novel rate selection algorithm based on the contrast sensitivity of human eyes, where in the client eyes cutoff spatial frequency under the current viewing conditions is calculated by using the human contrast sensitivity model. The algorithm selects the rate of video fragment which has the minimum absolute difference value to the spatial frequency computed, stored in server as the target rate. Compared with those methods for calculating the target rate based on bandwidth estimation and testing target rate in different angles, the proposed method gets the ladder diagrams of rate calculation of both methods. Experimental results demonstrate that the proposed algorithm is able to save a considerable amount of bandwidth without the loss of video quality, with viewing angle from 5 to 15. -
LUCA De Cicco and SAVERIO Mascolo. An adaptive video streaming control system: Modeling, validation and performance evaluation[J]. IEEE/ACM Transactions on Networking, 2013, 22(2): 526-539. doi: 10.1109/TNET.2013. 2253797. SAAMER A, NARAYaANASWAMY S, BEGEN A C, et al. An experimental evaluation of rate-adaptive video players over [U5]HTTP[J]. Signal Processing: Image Communication, 2012, 27(4): 271-287. doi: 10.1016/j.image.2011.10.003. RAN Yongyi, SHI Youkang, YANG Enzhong, et al. Dynamic resource allocation for video transcoding with QoS guaranteeing in cloud-based DASH system[C]. IEEE GlobeCom Workshops, (GC Wkshps), Austin, 2014: 144-149. TIAN Guibin and LIU Yong. Towards agile and smooth video adaptation in dynamic HTTP streaming[J]. IEEE/ACM Transactions on Networking, 2015, 9(11): 1-14. doi:[U6] 10.1109/ TNET.2015.2464700. REZNIK Y A. User-adaptive mobile video streaming using MPEG-DASH[C]. SPIE Optical Engineering+Applications. International Society for Optics and Photonics, San Diego, 2013: 88560J-88560J-5. VANAM R and REZNIK Y A. Perceptual pre-processing filter for user-adaptive coding and delivery of visual information[C]. IEEE Picture Coding Symposium (PCS), San Jose, 2013: 426-429. VANAM R, KEROFAKY L J, and REZNIK Y A. Perceptual pre-processing filter for adaptive video on demand content delivery[C]. IEEE International Conference on Image Processing (ICIP), Paris, 2014: 2537-2541. CHEN Wei, MA Liangping, STERNBERG G, et al. User-aware DASH over Wi-Fi[C]. International Conference on Computing, Networking and Communications (ICNC), Garden Grove, 2015: 749-753. KEROFAKY L, VANAM R, and REZNIK Y. Adapting objective video quality metrics to ambient lighting[C]. Seventh International Workshop on Quality of Multimedia Experience (QoMEX), Pylos-Nestoras, 2015: 1-6. NILL N B. A visual model weighted cosine transform for image compression and quality assessment[J]. IEEE Transactions on Communications, 1985, 33(6): 551-557. doi: 10.1109/TCOM. 985.1096337. SCHULZE T J. Procedure for calculating the resolution of electro-optical systems[C]. International Society for Optics and Photonics, San Diego-DL Tentative, 1990: 317-327. WU Yiyan and COLL D C. Multilevel block truncation coding using a minimax error criterion for high-fidelity compression of digital images[J]. IEEE Transactions on Communications, 1993, 41(8): 1179-1191. doi: 10.1109/26. 231961. DALY S J. Visible differences predictor: an algorithm for the assessment of image fidelity[C]. SPIE/IST 1992 Symposium on Electronic Imaging: Science and Technology, Cambridge, MA, 1992: 2-15. BARTEN P G J. Formula for the contrast sensitivity of the human eye[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2003, 5294: 231-238. doi: 10.1117/12. 537476. REZNIK Y A and VANAM R. Improving coding and delivery of video by exploiting the oblique effect[C]. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Austin, 2013: 775-778. The SVT high definition multi format test set[EB/OL]. ftp://vqeg.its.bldrdoc.gov/HDTV/SVT Multiformat/.2006. 2. MUELLER C, LEDERER S, POECHER J, et al. Demo paper: Libdash-an open source software library for the mpeg-dash standard[C]. IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, 2013: 1-2. THANG T C, HO Q D, KANG J W, et al. Adaptive streaming of audiovisual content using MPEG DASH[J]. IEEE Transactions on Consumer Electronics, 2012, 58(1): 78-85. doi: 10.1109/ TCE.2012.6170058. SEYEDEBRAHIMI M, PENG Xiaohong, and BAILEY C. Client QoE-oriented segment selection for DASH[C]. IEEE International Conference on Computer and Information Technology, Liverpool, 2015: 1663-1668. -
計量
- 文章訪問數(shù): 975
- HTML全文瀏覽量: 110
- PDF下載量: 338
- 被引次數(shù): 0