基于BP神經(jīng)網(wǎng)絡(luò)的自適應(yīng)偽最近鄰分類
doi: 10.11999/JEIT160133
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61104104, 61473061),四川省信號(hào)與信息重點(diǎn)實(shí)驗(yàn)室基金(SZJJ2009-002)
Adaptive Pseudo Nearest Neighbor Classification Based on BP Neural Network
Funds:
The National Natural Science Foundation of China (61104104, 61473061), The Fund of Sichuan Provincial Key Laboratory of Signal and Information Processing (SZJJ2009-002)
-
摘要: 在偽最近鄰(PNN)分類算法中,待分類樣本點(diǎn)與每一類樣本集中各個(gè)近鄰的距離加權(quán)系數(shù)都是主觀確定的,這就使得算法得不到最優(yōu)距離加權(quán)值。針對(duì)這一問(wèn)題,該文提出一種基于BP神經(jīng)網(wǎng)絡(luò)的自適應(yīng)偽最近鄰分類算法。首先通過(guò)計(jì)算待分類樣本點(diǎn)與每一類樣本集中各個(gè)近鄰的距離值,并將其作為BP神經(jīng)網(wǎng)絡(luò)的輸入。然后根據(jù)BP神經(jīng)網(wǎng)絡(luò)輸入與輸出之間的映射來(lái)自適應(yīng)確定相應(yīng)的距離加權(quán)值。最后由BP神經(jīng)網(wǎng)絡(luò)的輸出值判別樣本類別號(hào)。實(shí)驗(yàn)結(jié)果表明,該算法能夠自適應(yīng)地調(diào)節(jié)距離加權(quán)系數(shù),同時(shí)還能有效地改善分類準(zhǔn)確率。
-
關(guān)鍵詞:
- 偽最近鄰分類 /
- BP神經(jīng)網(wǎng)絡(luò) /
- 自適應(yīng)
Abstract: Distance-weighted coefficients between unlabeled sample point and its nearest neighbors belonging to same sample set are determined subjectively in the Pseudo Nearest Neighbor (PNN) classification algorithm, which makes it difficult to obtain optimal distance-weighted value. In this paper, an adaptive pseudo neighbor classification algorithm based on BP neural network is proposed. Firstly, the distance-weighted values between unlabeled sample point and its neighbors lying in the same sample set are regarded as the input of BP neural network. Secondly, the corresponding distance-weighted values are adaptively determined according to the mapping between the inputs and outputs of BP neural network. Finally, the classification of unlabeled sample point is judged by the outputs of BP neural network. Experimental results show that the proposed approach adaptively adjusts the distance-weighted coefficients. Moreover, the classification accuracy can be effectively improved. -
WU Xindong, KUMAR V, QUINLAN J R, et al. Top 10 algorithms in data mining[J]. Knowledge and Information Systems, 2008, 14(1): 1-37. doi: 10.1007/s10115-007-0114-2. MATEI O, POP P C, and VLEAN H. Optical character recognition in real environments using neural networks and k-nearest neighbor[J]. Applied Intelligence, 2013, 39(4): 739-748. doi: 10.1107/s10489-013-0456-2. WAN C H, LEE L H, RAJKUMAR R, et al. A hybrid text classi cation approach with low dependency on parameter by integrating k-nearest neighbor and support vector machine[J]. Expert Systems with Applications, 2012, 39(15): 11880-11888. doi: 10.1016/j.eswa.2012.02.068. CARAWAY N M, MCCREIGHT J L, and RAJAGOPALAN B. Multisite stochastic weather generation using cluster analysis and k-nearest neighbor time series resampling[J]. Journal of Hydrology, 2014, 508: 197-213. doi: 10.1016/ j.jhydrol.2013.10.054. RAHMAN S A, HUANG Y, CLAASSEN J, et al. Combining Fourier and lagged k-nearest neighbor imputation for biomedical time series data[J]. Journal of Biomedical Informatics, 2015, 58: 198-207. doi: 10.1016/j.jbi.2015. 10.004. GONZLEZ Mabel, BERGMEIR Christoph, TRIGUERO Isaac, et al. On the stopping criteria for k-Nearest Neighbor in positive unlabeled time series classi cation problems[J]. Information Sciences, 2016, 328: 42-59. doi:10.1016/j.ins. 2015.07.061. WANG A, AN N, CHEN G, et al. Accelerating wrapper- based feature selection with k-nearest-neighbor[J]. Knowledge-Based Systems, 2015, 83: 81-91. doi: 10.1016/ j.knosys.2015.03.009. CHEN C H, HUANG W T, Tan T H, et al. Using K-nearest neighbor classification to diagnose abnormal lung sounds[J]. Sensors, 2015, 15(6): 13132-13158. doi: 10.3390/s150613132. HAN Y, PARK K, HONG J, et al. Distance-constraint k-nearest neighbor searching in mobile sensor networks[J]. Sensors, 2015, 15(8): 18209-18228. doi: 10.3390/s150818209. TOMAEV N and MLADENIC D. Hubness-aware shared neighbor distances for high-dimensional k-nearest neighbor classification[J]. Knowledge and Information Systems, 2014, 39(1): 89-122. doi: 10.1007/s10115-012-0607-5. CHOI Sangil, YOUN Ik-hyun, LEMAY Richelle, et al. Biometric gait recognition based on wireless acceleration sensor using k-nearest neighbor classification[C]. 2014 IEEE International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, 2014: 1091-1095. doi: 10.1109/ICCNC.2014.6785491. DUDANI S A. The distance-weighted k-nearest-neighbor rule[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1976, 6(4): 325-327. doi: 10. 1109/TSMC. 1976.5408784. GOU Jianping, XIONG Taisong, and KUANG Yin. A novel weighted voting for k-nearest neighbor rule[J]. Journal of Computers, 2011, 6(5): 833-840. doi: 10.4304/jcp.6.5.833 -840. GOU Jianping, DU Lan, ZHANG Yuhong, et al. A new distance-weighted k-nearest neighbor classier[J]. Journal of Information Computational Science, 2012, 9(6): 1429-1436. BAILY T and JAIN A K. A note on distance-weighted k-nearest neighbor rules[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1978, 8(4): 311-313. doi: 10.1109/ TSMC. 1978.4309958. MORIN R L and RAESIDE B E. A reappraisal of distance-weighted k-nearest-neighbor classification for pattern recognition with missing data[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1981, 11(3): 241-243. doi: 10.1109/TSMC.1981.4308660. ZENG Yong, YANG Yupu, and ZHAO Liang. Pseudo nearest neighbor rule for pattern classification[J]. Expert Systems with Applications, 2009, 36: 3587-3595. doi: 10.1016/ j.eswa.2008.02.003. 楊凡, 趙建民, 朱信忠. 一種基于BP神經(jīng)網(wǎng)絡(luò)的車牌字符分類識(shí)別方法[J]. 計(jì)算機(jī)科學(xué), 2005, 32(8): 192-195. YANG Fan, ZHAO Jianmin, and ZHU Xinzhong. A new method of license plate characters classified recognition based on BP neural networks[J]. Computer Science, 2005, 32(8): 192-195. -
計(jì)量
- 文章訪問(wèn)數(shù): 1138
- HTML全文瀏覽量: 143
- PDF下載量: 656
- 被引次數(shù): 0