一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于BP神經(jīng)網(wǎng)絡(luò)的自適應(yīng)偽最近鄰分類

曾勇 舒歡 胡江平 葛月月

曾勇, 舒歡, 胡江平, 葛月月. 基于BP神經(jīng)網(wǎng)絡(luò)的自適應(yīng)偽最近鄰分類[J]. 電子與信息學(xué)報(bào), 2016, 38(11): 2774-2779. doi: 10.11999/JEIT160133
引用本文: 曾勇, 舒歡, 胡江平, 葛月月. 基于BP神經(jīng)網(wǎng)絡(luò)的自適應(yīng)偽最近鄰分類[J]. 電子與信息學(xué)報(bào), 2016, 38(11): 2774-2779. doi: 10.11999/JEIT160133
ZENG Yong, SHU Huan, HU Jiangping, GE Yueyue. Adaptive Pseudo Nearest Neighbor Classification Based on BP Neural Network[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2774-2779. doi: 10.11999/JEIT160133
Citation: ZENG Yong, SHU Huan, HU Jiangping, GE Yueyue. Adaptive Pseudo Nearest Neighbor Classification Based on BP Neural Network[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2774-2779. doi: 10.11999/JEIT160133

基于BP神經(jīng)網(wǎng)絡(luò)的自適應(yīng)偽最近鄰分類

doi: 10.11999/JEIT160133
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61104104, 61473061),四川省信號(hào)與信息重點(diǎn)實(shí)驗(yàn)室基金(SZJJ2009-002)

Adaptive Pseudo Nearest Neighbor Classification Based on BP Neural Network

Funds: 

The National Natural Science Foundation of China (61104104, 61473061), The Fund of Sichuan Provincial Key Laboratory of Signal and Information Processing (SZJJ2009-002)

  • 摘要: 在偽最近鄰(PNN)分類算法中,待分類樣本點(diǎn)與每一類樣本集中各個(gè)近鄰的距離加權(quán)系數(shù)都是主觀確定的,這就使得算法得不到最優(yōu)距離加權(quán)值。針對(duì)這一問(wèn)題,該文提出一種基于BP神經(jīng)網(wǎng)絡(luò)的自適應(yīng)偽最近鄰分類算法。首先通過(guò)計(jì)算待分類樣本點(diǎn)與每一類樣本集中各個(gè)近鄰的距離值,并將其作為BP神經(jīng)網(wǎng)絡(luò)的輸入。然后根據(jù)BP神經(jīng)網(wǎng)絡(luò)輸入與輸出之間的映射來(lái)自適應(yīng)確定相應(yīng)的距離加權(quán)值。最后由BP神經(jīng)網(wǎng)絡(luò)的輸出值判別樣本類別號(hào)。實(shí)驗(yàn)結(jié)果表明,該算法能夠自適應(yīng)地調(diào)節(jié)距離加權(quán)系數(shù),同時(shí)還能有效地改善分類準(zhǔn)確率。
  • WU Xindong, KUMAR V, QUINLAN J R, et al. Top 10 algorithms in data mining[J]. Knowledge and Information Systems, 2008, 14(1): 1-37. doi: 10.1007/s10115-007-0114-2.
    MATEI O, POP P C, and VLEAN H. Optical character recognition in real environments using neural networks and k-nearest neighbor[J]. Applied Intelligence, 2013, 39(4): 739-748. doi: 10.1107/s10489-013-0456-2.
    WAN C H, LEE L H, RAJKUMAR R, et al. A hybrid text classi cation approach with low dependency on parameter by integrating k-nearest neighbor and support vector machine[J]. Expert Systems with Applications, 2012, 39(15): 11880-11888. doi: 10.1016/j.eswa.2012.02.068.
    CARAWAY N M, MCCREIGHT J L, and RAJAGOPALAN B. Multisite stochastic weather generation using cluster analysis and k-nearest neighbor time series resampling[J]. Journal of Hydrology, 2014, 508: 197-213. doi: 10.1016/ j.jhydrol.2013.10.054.
    RAHMAN S A, HUANG Y, CLAASSEN J, et al. Combining Fourier and lagged k-nearest neighbor imputation for biomedical time series data[J]. Journal of Biomedical Informatics, 2015, 58: 198-207. doi: 10.1016/j.jbi.2015. 10.004.
    GONZLEZ Mabel, BERGMEIR Christoph, TRIGUERO Isaac, et al. On the stopping criteria for k-Nearest Neighbor in positive unlabeled time series classi cation problems[J]. Information Sciences, 2016, 328: 42-59. doi:10.1016/j.ins. 2015.07.061.
    WANG A, AN N, CHEN G, et al. Accelerating wrapper- based feature selection with k-nearest-neighbor[J]. Knowledge-Based Systems, 2015, 83: 81-91. doi: 10.1016/ j.knosys.2015.03.009.
    CHEN C H, HUANG W T, Tan T H, et al. Using K-nearest neighbor classification to diagnose abnormal lung sounds[J]. Sensors, 2015, 15(6): 13132-13158. doi: 10.3390/s150613132.
    HAN Y, PARK K, HONG J, et al. Distance-constraint k-nearest neighbor searching in mobile sensor networks[J]. Sensors, 2015, 15(8): 18209-18228. doi: 10.3390/s150818209.
    TOMAEV N and MLADENIC D. Hubness-aware shared neighbor distances for high-dimensional k-nearest neighbor classification[J]. Knowledge and Information Systems, 2014, 39(1): 89-122. doi: 10.1007/s10115-012-0607-5.
    CHOI Sangil, YOUN Ik-hyun, LEMAY Richelle, et al. Biometric gait recognition based on wireless acceleration sensor using k-nearest neighbor classification[C]. 2014 IEEE International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, 2014: 1091-1095. doi: 10.1109/ICCNC.2014.6785491.
    DUDANI S A. The distance-weighted k-nearest-neighbor rule[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1976, 6(4): 325-327. doi: 10. 1109/TSMC. 1976.5408784.
    GOU Jianping, XIONG Taisong, and KUANG Yin. A novel weighted voting for k-nearest neighbor rule[J]. Journal of Computers, 2011, 6(5): 833-840. doi: 10.4304/jcp.6.5.833 -840.
    GOU Jianping, DU Lan, ZHANG Yuhong, et al. A new distance-weighted k-nearest neighbor classier[J]. Journal of Information Computational Science, 2012, 9(6): 1429-1436.
    BAILY T and JAIN A K. A note on distance-weighted k-nearest neighbor rules[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1978, 8(4): 311-313. doi: 10.1109/ TSMC. 1978.4309958.
    MORIN R L and RAESIDE B E. A reappraisal of distance-weighted k-nearest-neighbor classification for pattern recognition with missing data[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1981, 11(3): 241-243. doi: 10.1109/TSMC.1981.4308660.
    ZENG Yong, YANG Yupu, and ZHAO Liang. Pseudo nearest neighbor rule for pattern classification[J]. Expert Systems with Applications, 2009, 36: 3587-3595. doi: 10.1016/ j.eswa.2008.02.003.
    楊凡, 趙建民, 朱信忠. 一種基于BP神經(jīng)網(wǎng)絡(luò)的車牌字符分類識(shí)別方法[J]. 計(jì)算機(jī)科學(xué), 2005, 32(8): 192-195.
    YANG Fan, ZHAO Jianmin, and ZHU Xinzhong. A new method of license plate characters classified recognition based on BP neural networks[J]. Computer Science, 2005, 32(8): 192-195.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1138
  • HTML全文瀏覽量:  143
  • PDF下載量:  656
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-01-29
  • 修回日期:  2016-06-17
  • 刊出日期:  2016-11-19

目錄

    /

    返回文章
    返回