基于隨機(jī)矩陣?yán)碚摵妥钚∶枋鲩L度的機(jī)載前視陣?yán)走_(dá)雜波自由度估計
doi: 10.11999/JEIT160132
國家自然科學(xué)基金(61471365, 61571442, 61231017)
中央高?;究蒲袠I(yè)務(wù)費項目(3122015B002),中國民航大學(xué)藍(lán)天青年學(xué)者培養(yǎng)經(jīng)費
Estimation of Clutter Degrees of Freedom in Airborne Forward-looking Radar via Random Matrix Theory and Minimum Description Length Criteria
The National Natural Science Foundation of China (61471365, 61571442, 61231017), The National Universitys Basic Research Foundation of China (3122015B002), The Foundation for Sky Young Scholars of Civil Aviation University of China
-
摘要: 有限訓(xùn)練樣本時,總體協(xié)方差矩陣特征譜的嚴(yán)重擴(kuò)展使得機(jī)載前視陣?yán)走_(dá)雜波自由度估計困難。該文提出一種前視陣雜波自由度估計方法,該方法利用隨機(jī)矩陣?yán)碚?Random Matrix Theory, RMT)中特征值統(tǒng)計分布特性建立參數(shù)化的概率模型,結(jié)合最小描述長度(Minimum Description Length, MDL)準(zhǔn)則關(guān)于信源檢測的思想估計雜波自由度。該方法能夠在有限訓(xùn)練樣下實現(xiàn)雜波自由度的有效估計,仿真結(jié)果驗證了方法的有效性。
-
關(guān)鍵詞:
- 前視陣?yán)走_(dá) /
- 雜波自由度 /
- 隨機(jī)矩陣?yán)碚?/a> /
- 最小描述長度 /
- 協(xié)方差矩陣
Abstract: Owing to the heavy spread of eigenspectrum of the population covariance matrix under finite training samples condition, it is a challenge to estimate the clutter Degrees of Freedom (DoF) in airborne forward-looking radar. In this work, a method for estimation the clutters DoF is proposed. In order to estimate the clutters DoF, an idea from sources detection by Minimum Description Length (MDL) criterion is borrowed, and the parametric probability model is formed based on the eigenvalues statistical distribution properties from Random Matrix Theory (RMT). The proposed method is effective to estimate the clutters DoF under finite training samples condition, and the simulation results verify the efficiency of the proposed method. -
GUERCI J R. Space-Time Adaptive Processing for Radar [M]. Norwood, Artech House, 2014: 1-74. FERTIG L B. Analytical expressions for Space-Time Adaptive Processing (STAP) performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 42-53. doi: 10.1109/TAES.2014.130676. DEGURSE J F, SAVY L, and MARCOS S. Reduced-rank STAP for target detection in heterogeneous environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1153-1162. doi: 10.1109/TAES.2014.120414. BRENNAN L E and STAUDAHER F M. Subclutter visibility demonstration[R]. Technical Report RL-TR-92-21, Adaptive Sensors Incorporated, 1992. 同壓龍, 王彤, 文才, 等. 一種穩(wěn)健的機(jī)載非正側(cè)視陣?yán)走_(dá)雜波抑制方法[J]. 電子與信息學(xué)報, 2015, 37(5): 1044-1050. doi: 10.11999/JEIT141222. TONG Yalong, WANG Tong, WEN Cai, et al. A robust clutter suppression method for airborne non-sidelooking radar[J]. Journal of Electronics Information Technology, 2015, 37(5): 1044-1050. doi: 10.11999/JEIT141222. BAI Z D and SILVERSTEIN J W. Spectral Analysis of Large Dimensional Random matrices[M]. New York: Springer, 2010: 1-13. ZWINGELSTEIN C M and DEBBAH M. Random matrix theory based resource allocation in correlated MIMO systems with ARQ feedback[J]. IEEE Communications Letters, 2014, 18(5): 793-796. doi: 10.1109/LCOMM.2014.031414.140214. KRITCHMAN S and NADLER B. Non-parametric detection of the number of signals: hypothesis testing and random matrix theory[J]. IEEE Transactions on Signal Processing, 2009, 57(10): 3930-3941. doi: 10.1109/TSP.2009.2022897. VALLET P, LOUBATON P, and MESTRE X. Improved subspace estimation for multivariate observations of high dimension: the deterministic signals case[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1043-1068. AHMED A, HU Y F, NORAS J M, et al. Random matrix theory based spectrum sensing for cognitive radio networks [C] Internet Technologies and Applications, Wrexham, 2015: 479-483. WAX M and KAILATH T. Detection of signals by information theoretic criteria[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(2): 387-392. doi: 10.1109/TASSP.1985.1164557. BARRON A, RISSANEN J, and YU B. The minimum description length principle in coding and modeling[J]. IEEE Transactions on Information Theory, 1998, 44(6): 2743-2760. doi: 10.1109/18.720554. HUANG L and SO H C. Source enumeration via MDL criterion based on linear shrinkage estimation of noise subspace covariance matrix[J]. IEEE Transactions on Signal Processing, 2013, 61(19): 4806-4821. doi: 10.1109/TSP. 2013.2273198. HAIMOVICH A M and AYOUB T F. The eigencanceler: Space time adaptive radar by eigenanalysis methods[R]. New Jersey Inst of Tech Newark, 1999. MARCENKO V A and PASTUR L A. Distribution of eigenvalues for some sets of random matrices[J]. Sbornik: Mathematics, 1967, 1(4): 457-483. NADAKUDITI R R and EDELMAN A. Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 2625-2638. doi: 10. 1109/TSP.2008. 917356. BAI Z D and SILVERSTEIN J W. CLT for linear spectral statistics of large-dimensional sample covariance matrices[J]. Annals of Probability, 2004, 32(1): 553-605. WARD J. Space-time adaptive processing for airborne radar [R]. Technical Report 1015, MIT Lincoln Laboratory, 1994. REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(4): 853-863. doi: 10.1109/TAES.1974.307893. -
計量
- 文章訪問數(shù): 1684
- HTML全文瀏覽量: 202
- PDF下載量: 353
- 被引次數(shù): 0