一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

融合L2范數(shù)最小化和壓縮Haar-like特征匹配的快速目標(biāo)跟蹤

吳正平 楊杰 崔曉夢 張慶年

吳正平, 楊杰, 崔曉夢, 張慶年. 融合L2范數(shù)最小化和壓縮Haar-like特征匹配的快速目標(biāo)跟蹤[J]. 電子與信息學(xué)報, 2016, 38(11): 2803-2810. doi: 10.11999/JEIT160122
引用本文: 吳正平, 楊杰, 崔曉夢, 張慶年. 融合L2范數(shù)最小化和壓縮Haar-like特征匹配的快速目標(biāo)跟蹤[J]. 電子與信息學(xué)報, 2016, 38(11): 2803-2810. doi: 10.11999/JEIT160122
WU Zhengping, YANG Jie, CUI Xiaomeng, ZHANG Qingnian. Fast Object Tracking Based on L2-norm Minimization andCompressed Haar-like Features Matching[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2803-2810. doi: 10.11999/JEIT160122
Citation: WU Zhengping, YANG Jie, CUI Xiaomeng, ZHANG Qingnian. Fast Object Tracking Based on L2-norm Minimization andCompressed Haar-like Features Matching[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2803-2810. doi: 10.11999/JEIT160122

融合L2范數(shù)最小化和壓縮Haar-like特征匹配的快速目標(biāo)跟蹤

doi: 10.11999/JEIT160122
基金項目: 

國家自然科學(xué)基金(51479159)

Fast Object Tracking Based on L2-norm Minimization andCompressed Haar-like Features Matching

Funds: 

The National Natural Science Foundation of China (51479159)

  • 摘要: 在貝葉斯推理框架下,基于PCA子空間和L2范數(shù)最小化的目標(biāo)跟蹤算法能較好地處理視頻場景中多種復(fù)雜的外觀變化,但在目標(biāo)出現(xiàn)旋轉(zhuǎn)或姿態(tài)變化時易發(fā)生跟蹤漂移現(xiàn)象。針對這一問題,該文提出一種融合L2范數(shù)最小化和壓縮Haar-like特征匹配的快速視覺跟蹤方法。該方法通過去除規(guī)模龐大的方塊模板集和簡化觀測似然度函數(shù)降低計算的復(fù)雜度;而壓縮Haar-like特征匹配技術(shù)則增強了算法對目標(biāo)姿態(tài)變化及旋轉(zhuǎn)的魯棒性。實驗結(jié)果表明:與目前流行的跟蹤方法相比,該方法對嚴(yán)重遮擋、光照突變、快速運動、姿態(tài)變化和旋轉(zhuǎn)等干擾均具有較強的魯棒性,且在多個測試視頻上可以達(dá)到29幀/s的速度,能滿足快速視頻跟蹤要求。
  • COMANICIU D, RAMESH V, and MEER P. Real-time tracking of non-rigid objects using mean shift[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, 2000: 142-149.
    KATJA N, ESTHER K M, and LUC V G. An adaptive color-based filter[J]. Image Vision Computing, 2003, 21(1): 99-110.
    ROSS D, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141. doi: 10.1007/s11263- 007-0075-7.
    MEI Xue and LING Haibin. Robust visual tracking using minimization[C]. Proceedings of IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 1436-1443.
    MEI Xue, LING Haibin, WU Yi, et al. Minimum error bounded efficient tracker with occlusion detection[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011: 1257-1264.
    BAO Chenglong, WU Yi, LING Haibin, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 1830-1837.
    SHI Qinfeng, ERIKSSON A, VAN DEN HENGEL A, et al. Is face recognition really a compressive sensing problem?[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011: 553-560.
    XIAO Ziyang, LU Huchuan, and WANG Dong. Object tracking with L2_RLS[C]. Proceedings of 21st International Conference on Pattern Recognition, Tsukuba, Japan, 2012: 681-684.
    XIAO Ziyang, LU Huchuan, and WANG Dong. L2-RLS based object tracking[J]. IEEE Transactions on Circuits Systems for Video Technology, 2014, 24(8): 1301-1309. doi: 10.11834/jig.20140105.
    齊美彬, 楊勛, 楊艷芳, 等. 基于L范數(shù)最小化的實時目標(biāo)跟蹤[J]. 中國圖象圖形學(xué)報, 2014, 19(1): 36-44. doi: 10.11834/jig.20140105.
    QI Meibin, YANG Xun, YANG Yanfang, et al. Real-time object tracking based on L-norm minimization[J]. Journal of Image and Graphics, 2014, 19(1): 36-44. doi: 10.11834/jig. 20140105.
    袁廣林, 薛模根. L范數(shù)正則化魯棒性編碼視覺跟蹤[J]. 電子與信息學(xué)報, 2014, 36(8): 1838-1843. doi: 10.3724/SP.J. 1146.2013.01416.
    YUAN Guanglin and XUE Mogen. Robust coding via L-norm regularization for visual tracking[J]. Journal of Electronics Information Technology, 2014, 36(8): 1838-1843. doi: 10.3724/SP.J.1146.2013.01416.
    WU Zhengping, YANG Jie, LIU Haibo, et al. A real-time object tracking via L2-RLS and compressed Haar-like features matching[J]. Multimedia Tools and Applications, 2016: 1-17. doi: 10.1007/s11042-016-3356-8.
    HONG S and HAN B. Visual tracking by sampling tree-structured graphical models[C]. Proceedings of European Conference on Computer Vision, Zurich, Switzerland, 2014: 1-16. [14] ZHUANG Bohan, LU Huchuan, XIAO Ziyang, et al. Visual tracking via discriminative sparse similarity map[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1872-1881. doi: 10.1109/TIP.2014.2308414.
    ZHANG Kaihua, ZHANG Lei, and YANG Minghsuan. Real-time compressive tracking[C]. Proceedings of European Conference on Computer Vision, Florence, Italy, 2012: 864-877. [16] HENRIQUES J, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/TPAMI. 2014.2345390.
    LI Hanxin, LI Yi, and FATIH P. Deep track: learning discriminative feature representations by convolutional neural networks for visual tracking[C]. Proceedings of the British Machine Vision Conference, Nottingham, United Kingdom, 2014: 110-119.
    WU Zhengping, YANG Jie, LIU Haibo, et al. Robust compressive tracking under occlusion[C]. Proceedings of International Conference on Consumer Electronics, Berlin, Germany, 2015: 298-302.
    WU Yi, LIM J, and YANG Minghsuan. Online object tracking: a benchmark[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, ORegon, USA, 2013: 2411-2418.
  • 加載中
計量
  • 文章訪問數(shù):  1367
  • HTML全文瀏覽量:  164
  • PDF下載量:  488
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-01-26
  • 修回日期:  2016-06-08
  • 刊出日期:  2016-11-19

目錄

    /

    返回文章
    返回