一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于混合稀疏基字典學(xué)習(xí)的微波輻射圖像重構(gòu)方法

朱路 宋超 劉媛媛 黃志群 王楊

朱路, 宋超, 劉媛媛, 黃志群, 王楊. 基于混合稀疏基字典學(xué)習(xí)的微波輻射圖像重構(gòu)方法[J]. 電子與信息學(xué)報, 2016, 38(11): 2724-2730. doi: 10.11999/JEIT160104
引用本文: 朱路, 宋超, 劉媛媛, 黃志群, 王楊. 基于混合稀疏基字典學(xué)習(xí)的微波輻射圖像重構(gòu)方法[J]. 電子與信息學(xué)報, 2016, 38(11): 2724-2730. doi: 10.11999/JEIT160104
ZHU Lu, SONG Chao, LIU Yuanyuan, HUANG Zhiqun, WANG Yang. Microwave Radiation Image Reconstruction Method Based on the Mixed Sparse Basis Dictionary Learning[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2724-2730. doi: 10.11999/JEIT160104
Citation: ZHU Lu, SONG Chao, LIU Yuanyuan, HUANG Zhiqun, WANG Yang. Microwave Radiation Image Reconstruction Method Based on the Mixed Sparse Basis Dictionary Learning[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2724-2730. doi: 10.11999/JEIT160104

基于混合稀疏基字典學(xué)習(xí)的微波輻射圖像重構(gòu)方法

doi: 10.11999/JEIT160104
基金項目: 

國家自然科學(xué)基金(31101081, 61162015),江西省自然科學(xué)基金(20161BAB202061)

Microwave Radiation Image Reconstruction Method Based on the Mixed Sparse Basis Dictionary Learning

Funds: 

The National Natural Science Foundation of China (31101081, 61162015), The Natural Science Foundation of Jiangxi Province (20161BAB202061)

  • 摘要: 目前的微波輻射測量成像系統(tǒng)在一次觀測中所采集的數(shù)據(jù)量大,基于奈奎斯特空間采樣及常規(guī)微波輻射圖像重構(gòu)方法難以實現(xiàn)高分辨率要求。該文針對微波輻射干涉測量在頻域中進行,采用傅里葉最優(yōu)隨機抽取的超稀疏干涉測量(低于奈奎斯特采樣)對微波輻射圖像進行線性壓縮投影,降低數(shù)據(jù)采樣。考慮微波輻射圖像在總體差分域和小波中都具有可壓縮特性,提出總體差分和小波混合正交基的K-SVD字典學(xué)習(xí)微波輻射圖像重構(gòu)模型,利用Bregman和交替迭代算法求解該模型,重構(gòu)線性壓縮投影信息從而獲得微波輻射圖像。仿真實驗表明,該文提出的算法在微波輻射圖像重構(gòu)效果、噪聲穩(wěn)定性上優(yōu)于DLMRI算法和GradDLRec算法。
  • SWIFT C T, LEVINE D M, and RUF C S. Aperture synthesis concepts in microwave remote sensing of the Earth[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(12): 1931-1935. doi: 10.1109/22.106530.
    KERR Y H, WALDTEUFEL P, WIGNERON J, et al. The SMOS mission: New tool for monitoring key elements of the global water cycle[J]. Proceedings of the IEEE, 2010, 98(5): 666-687. doi: 10.1109/JPROC.2010.2043032.
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582.
    LIU Y DE, DE VOS M, GLIGORIJEVIC I, et al. Multi-structural signal recovery for biomedical compressive sensing[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2794-2805. doi: 10.1109/TBME.2013.2264772.
    朱路, 劉江鋒, 劉媛媛, 等. 基于稀疏采樣與級聯(lián)字典的微波輻射圖像重構(gòu)方法[J]. 微波學(xué)報, 2014, 30(6): 41-45.
    ZHU Lu, LIU Jiangfeng, LIU Yuanyuan, et al. Microwave radiation image reconstruction method based on the sparse sampling and combined dictionary[J]. Journal of Microwaves, 2014, 30(6): 41-45.
    AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. doi: 10.1109/TSP.2006.881199.
    練秋生, 石保順, 陳書貞. 字典學(xué)習(xí)模型、算法及其應(yīng)用研究進展[J]. 自動化學(xué)報, 2015, 41(2): 240-260. doi: 10.16383/ j.aas.2015.c140252.
    LIAN Qiusheng, SHI Baoshun, and CHEN Shuzhen. Research advances on dictionary learning models, algorithms and applications[J]. Acta Automatica Sinica, 2015, 41(2): 240-260. doi: 10.16383/j.aas.2015.c140252.
    RAVISHANKAR S and BRESLER Y. MR image reconstruction from highly undersampled k-space data by dictionary learning[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028-1041. doi: 10.1109/TMI.2010.2090538.
    LIU Q, WANG S, YING L, et al. Adaptive dictionary learning in sparse gradient domain for image recovery[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4652-4663. doi: 10.1109/TIP.2013.2277798.
    HUANG Y, PAISLEY J, LIN Q, et al. Bayesian nonparametric dictionary learning for compressed sensing MRI[J]. IEEE Transactions on Image Processing, 2014, 23(12): 5007-5019. doi: 10.1109/TIP.2014.2360122.
    THIAGARAJAN J J, RAMAMURTHY K N, and SPANIAS A. Learning stable multilevel dictionaries for space representations[J]. IEEE Transactions on Neural Networks Learning Systems, 2015, 26(9): 1913-1926. doi: 10.1109/ TNNLS.2014.2361052.
    SHEN L, SUN G, HUANG Q, et al. Multi-level discriminative dictionary learning with application to large scale image classification[J]. IEEE Transactions on Image Processing, 2015, 24(10): 3109-3123. doi: 10.1109/TIP.2015.2438548.
    LU C, SHI J, and JIA J. Scale adaptive dictionary learning[J]. IEEE Transactions on Image Processing, 2014, 23(2): 837-847. doi: 10.1109/TIP.2013.2287602.
    MAHMOUD N, FAEZEH Y, and HUSEYIN O. A strategy for residual component-based multiple structured dictionary learning[J]. IEEE Signal Processing Letters, 2015, 22(11): 2059-2063. doi: 10.1109/LSP.2015.2456071.
    朱路, 陳素華, 劉江鋒, 等. 基于變密度稀疏采樣的微波輻射干涉測量反演成像方法[J]. 計算機應(yīng)用研究, 2015, 32(4): 1236-1239. doi: 10.3969/j.issn.1001-3695.2015.04.066.
    ZHU Lu, CHEN Suhua, LIU Jiangfeng, et al. Microwave radiation interferometry inversion imaging method based on variable density sparse sampling[J]. Application Research of Computers, 2015, 32(4): 1236-1239. doi: 10.3969/j.issn. 1001-3695.2015.04.066.
    YIN W, OSHER S, GOLDFARB D, et al. Bregman iterative algorithms for l1-minimization with applications to compressed sensing[J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168. doi: 10.1137/070703983.
  • 加載中
計量
  • 文章訪問數(shù):  1451
  • HTML全文瀏覽量:  140
  • PDF下載量:  637
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-01-21
  • 修回日期:  2016-08-03
  • 刊出日期:  2016-11-19

目錄

    /

    返回文章
    返回