基于混合稀疏基字典學(xué)習(xí)的微波輻射圖像重構(gòu)方法
doi: 10.11999/JEIT160104
基金項目:
國家自然科學(xué)基金(31101081, 61162015),江西省自然科學(xué)基金(20161BAB202061)
Microwave Radiation Image Reconstruction Method Based on the Mixed Sparse Basis Dictionary Learning
Funds:
The National Natural Science Foundation of China (31101081, 61162015), The Natural Science Foundation of Jiangxi Province (20161BAB202061)
-
摘要: 目前的微波輻射測量成像系統(tǒng)在一次觀測中所采集的數(shù)據(jù)量大,基于奈奎斯特空間采樣及常規(guī)微波輻射圖像重構(gòu)方法難以實現(xiàn)高分辨率要求。該文針對微波輻射干涉測量在頻域中進行,采用傅里葉最優(yōu)隨機抽取的超稀疏干涉測量(低于奈奎斯特采樣)對微波輻射圖像進行線性壓縮投影,降低數(shù)據(jù)采樣。考慮微波輻射圖像在總體差分域和小波中都具有可壓縮特性,提出總體差分和小波混合正交基的K-SVD字典學(xué)習(xí)微波輻射圖像重構(gòu)模型,利用Bregman和交替迭代算法求解該模型,重構(gòu)線性壓縮投影信息從而獲得微波輻射圖像。仿真實驗表明,該文提出的算法在微波輻射圖像重構(gòu)效果、噪聲穩(wěn)定性上優(yōu)于DLMRI算法和GradDLRec算法。
-
關(guān)鍵詞:
- 微波輻射圖像 /
- 超稀疏干涉測量 /
- 混合正交基字典學(xué)習(xí) /
- 交替迭代方法
Abstract: At present, the amount of data collection of microwave radiometric imaging system in one snapshot is massive, so it is difficult to achieve the high spatial resolution by conventional microwave radiation imaging method based on the Nyquist sampling. According to the situations of microwave radiation interferometry conducted in the frequency domain, super sparse interferometry is adopted based on the optimal random Fourier sampling to sparsely project microwave radiation image, reducing the amount of data collection. Considering that the microwave radiation image has the character of compressibility in the total variation and microwave domain, the model of microwave radiation image reconstruction method is proposed based on the learning dictionary of mixed sparse basis of total variation and the wavelet, and the microwave radiation image is reconstructed by the Bregman and alternate direction method. The simulation results show that the proposed algorithm is better than the DLMRI algorithm and GradDLRec algorithm from two aspects of image reconstruction and noise sensitivity. -
SWIFT C T, LEVINE D M, and RUF C S. Aperture synthesis concepts in microwave remote sensing of the Earth[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(12): 1931-1935. doi: 10.1109/22.106530. KERR Y H, WALDTEUFEL P, WIGNERON J, et al. The SMOS mission: New tool for monitoring key elements of the global water cycle[J]. Proceedings of the IEEE, 2010, 98(5): 666-687. doi: 10.1109/JPROC.2010.2043032. DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582. LIU Y DE, DE VOS M, GLIGORIJEVIC I, et al. Multi-structural signal recovery for biomedical compressive sensing[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2794-2805. doi: 10.1109/TBME.2013.2264772. 朱路, 劉江鋒, 劉媛媛, 等. 基于稀疏采樣與級聯(lián)字典的微波輻射圖像重構(gòu)方法[J]. 微波學(xué)報, 2014, 30(6): 41-45. ZHU Lu, LIU Jiangfeng, LIU Yuanyuan, et al. Microwave radiation image reconstruction method based on the sparse sampling and combined dictionary[J]. Journal of Microwaves, 2014, 30(6): 41-45. AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. doi: 10.1109/TSP.2006.881199. 練秋生, 石保順, 陳書貞. 字典學(xué)習(xí)模型、算法及其應(yīng)用研究進展[J]. 自動化學(xué)報, 2015, 41(2): 240-260. doi: 10.16383/ j.aas.2015.c140252. LIAN Qiusheng, SHI Baoshun, and CHEN Shuzhen. Research advances on dictionary learning models, algorithms and applications[J]. Acta Automatica Sinica, 2015, 41(2): 240-260. doi: 10.16383/j.aas.2015.c140252. RAVISHANKAR S and BRESLER Y. MR image reconstruction from highly undersampled k-space data by dictionary learning[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028-1041. doi: 10.1109/TMI.2010.2090538. LIU Q, WANG S, YING L, et al. Adaptive dictionary learning in sparse gradient domain for image recovery[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4652-4663. doi: 10.1109/TIP.2013.2277798. HUANG Y, PAISLEY J, LIN Q, et al. Bayesian nonparametric dictionary learning for compressed sensing MRI[J]. IEEE Transactions on Image Processing, 2014, 23(12): 5007-5019. doi: 10.1109/TIP.2014.2360122. THIAGARAJAN J J, RAMAMURTHY K N, and SPANIAS A. Learning stable multilevel dictionaries for space representations[J]. IEEE Transactions on Neural Networks Learning Systems, 2015, 26(9): 1913-1926. doi: 10.1109/ TNNLS.2014.2361052. SHEN L, SUN G, HUANG Q, et al. Multi-level discriminative dictionary learning with application to large scale image classification[J]. IEEE Transactions on Image Processing, 2015, 24(10): 3109-3123. doi: 10.1109/TIP.2015.2438548. LU C, SHI J, and JIA J. Scale adaptive dictionary learning[J]. IEEE Transactions on Image Processing, 2014, 23(2): 837-847. doi: 10.1109/TIP.2013.2287602. MAHMOUD N, FAEZEH Y, and HUSEYIN O. A strategy for residual component-based multiple structured dictionary learning[J]. IEEE Signal Processing Letters, 2015, 22(11): 2059-2063. doi: 10.1109/LSP.2015.2456071. 朱路, 陳素華, 劉江鋒, 等. 基于變密度稀疏采樣的微波輻射干涉測量反演成像方法[J]. 計算機應(yīng)用研究, 2015, 32(4): 1236-1239. doi: 10.3969/j.issn.1001-3695.2015.04.066. ZHU Lu, CHEN Suhua, LIU Jiangfeng, et al. Microwave radiation interferometry inversion imaging method based on variable density sparse sampling[J]. Application Research of Computers, 2015, 32(4): 1236-1239. doi: 10.3969/j.issn. 1001-3695.2015.04.066. YIN W, OSHER S, GOLDFARB D, et al. Bregman iterative algorithms for l1-minimization with applications to compressed sensing[J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168. doi: 10.1137/070703983. -
計量
- 文章訪問數(shù): 1451
- HTML全文瀏覽量: 140
- PDF下載量: 637
- 被引次數(shù): 0