基于分形結(jié)構(gòu)的植被高階相干散射模型研究
doi: 10.11999/JEIT160095
-
2.
(中國(guó)科學(xué)院電磁輻射與探測(cè)技術(shù)重點(diǎn)實(shí)驗(yàn)室 北京 100190) ②(中國(guó)科學(xué)院大學(xué) 北京 100049)
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61172017)
High-order Coherent Scattering Model for Vegetation with Fractal Structures
-
2.
(Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China)
Funds:
The National Natural Science Foundation of China (61172017)
-
摘要: 電磁波低頻入射情況下,植被中散射體獨(dú)立不相關(guān)的假設(shè)無效,此時(shí)應(yīng)考慮散射體之間的相干效應(yīng)以及近場(chǎng)互作用。該文提出一種基于分形結(jié)構(gòu)的植被高階相干散射模型,該模型利用分形理論生成近乎真實(shí)植被的3維幾何結(jié)構(gòu),根據(jù)每個(gè)散射體的空間位置信息考慮了相干效應(yīng),應(yīng)用互易定理計(jì)算了相鄰散射體間高階互作用,結(jié)合非相干的分層模型中后向散射機(jī)制劃分方式,給出了各項(xiàng)散射機(jī)制的表達(dá)式。與機(jī)載合成孔徑雷達(dá)實(shí)驗(yàn)數(shù)據(jù)對(duì)比,驗(yàn)證了模型的準(zhǔn)確性。在針葉林仿真參數(shù)下,分析了各項(xiàng)散射機(jī)制對(duì)總散射效應(yīng)的貢獻(xiàn)與入射頻率、角度、植被結(jié)構(gòu)的關(guān)系,結(jié)果表明,低頻入射條件下,稀疏植被散射模型可進(jìn)一步簡(jiǎn)化從而應(yīng)用于參數(shù)反演中。
-
關(guān)鍵詞:
- 植被 /
- 分形結(jié)構(gòu) /
- 相干效應(yīng) /
- 近場(chǎng)互作用 /
- 后向散射
Abstract: At low frequency, the assumption of independent scattering of the scatterers in vegetation medium is no longer valid. The coherent effect and near field interactions should be considered. In this paper, a high-order coherent scattering model for vegetation with fractal structure is presented. The fractal theory is employed to generate a realistic 3-D spatial structure of vegetation. The near field interaction between scatterers is formulated using an efficient algorithm based on the reciprocity theorem. For the coherent effect, every scatterer with a deterministic location is taken into account. The main scattering mechanisms are defined in the way of layered vegetation model, allowing better understanding of microwave interaction with trunk-crown structure. Good agreements are obtained from the comparisons of the theoretical predictions with the multifrequency and multipolarization measurement results of boreal forest. Through an extensive ground truth, theoretical analysis of the contribution of the scattering mechanisms for various frequencies, incident angles and vegetation structures is carried out. It is found that under specified conditions the vegetation scattering model can be simplified according to the main contribution scattering mechanism which can be applied to the inversion issue.-
Key words:
- Vegetation /
- Fractal structures /
- Coherent effect /
- Near field interaction /
- Backscattering.
-
KWEON A K and OH Y. Modified water-cloud model with leaf angle parameters for microwave backscattering from agricultural fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2802-2809. doi: 10.1109/ TGRS.2014.2364914. 孫晗偉, 胡程, 曾濤. 一種三維森林場(chǎng)景極化SAR數(shù)據(jù)的快速模擬方法[J]. 電子信息學(xué)報(bào), 2012, 34(6): 1297-1304. doi: 10.3724/SP.J.1146.2011.00766. SUN Hanwei, HU Cheng, and ZENG Tao. A fast method of polarimetric sar data simulation for three-dimension forest stand[J]. Journal of Electronics Information Technology, 2012, 34(6): 1297-1304. doi: 10.3724/SP.J.1146.2011.00766. DANUDIRDJO D and HIROSE A. InSAR image regularization and DEM error correction with fractal surface scattering model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1427-1439. doi: 10.1109/TGRS. 2014.2341254. ZHANG Qian and CHAI Linna. A parameterized multiple-scattering model for microwave emission from vegetation[C]. Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015: 645-648. doi: 10.1109/IGARSS. 2015.7325846. ZOU Bin, ZHANG Yan, CAO Ning, et al. A four-component decomposition model for PolSAR data using asymmetric scattering component[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 8(3): 1051-1061. doi: 10.1109/ JSTARS.2014.2380151. LIANG Xiaolin, ZHAO Xiongwen, LI Shu, et al. A non-stationary geometry-based scattering model for street vehicle-to-vehicle wideband MIMO channels[C]. Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, 2015: 2239-2243. doi: 10.1109/PIMRC.2015.7343670. SURENDAR M, BHATTACHARYA A, et al. Development of a snow wetness inversion algorithm using polarimetric scattering power decomposition model[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 42: 65-75. doi: 10.1016/j.jag.2015.05.010. LEE J S, AINSWORTH T L, and WANG Y T. Generalized polarimetric model-based decompositions using incoherent scattering models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2474-2491. doi: 10.1109/ TGRS.2013.2262051 KUSANO S, TAKAHASHI K, and SATO M. A new decomposition of a POLSAR coherency matrix using a generalized scattering model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3933-3940. doi: 10.1109/JSTARS.2014.2367540. TABATABAEENEJAD A, BURGIN M, DUAN X Y, et al. P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: first airMOSS results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 645-658. doi: 10.1109/TGRS.2014.2326839. TABATABAEENEJAD A, BURGIN M, and MOGHADDAM M. Potential of L-band radar for retrieval of canopy and subcanopy parameters of boreal forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6): 2150-2160. doi: 10.1109/TGRS.2011.2173349. ULABY F T, SARABANDI K, MCDONALD K, et al. Michigan microwave canopy scattering model MIMICS[J]. International Journal of Remote Sensing, 1990, 11(7): 1223-1253. LIANG P, MOGHADDAM M, et al. Radar backscattering model for multilayer mixed-species forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(11): 2612-2626. doi: 10.1109/TGRS.2005.847909. THIRION L, COLIN E, and DAHON C. Capabilities of a forest coherent scattering model applied to radiometry, interferometry, and polarimetry at P- and L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4): 849-862. doi: 10.1109/TGRS.2005.862523. BURGIN M, CLEWLEY D, LUCAS R M, et al. A generalized radar backscattering model based on wave theory for multilayer multispecies vegetation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 4832-4845. doi: 10.1109/TGRS.2011.2172949. TSANG L, KONG J A, and DING K H. Scattering of Electromagnetic Waves: Theories and Applications[M]. New York: Wiley, 2000: 101-108. KARAM M A, FUNG A K, and Antar Y M. Electromagnetic wave scattering from some vegetation samples[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 799-807. doi: 10.1109/36.7711. EWE H T and CHUAH H T. Electromagnetic scattering from an electrically dense vegetation medium[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2093-2105. doi: 10.1109/36.868868. LIN Y C and SARABANDI K. A monte carlo coherent scattering model for forest canopies using fractal-generated trees[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 440-451. doi: 10.1109/36.739083. LIU D W, SUN G Q, GUO Z F, et al. Three-dimensional coherent radar backscatter model and simulations of scattering phase center of forest canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 349-357. doi: 10.1109/TGRS.2009.2024301. PRUSINKIEWICZ P and LINDENMAYER A. The Algorithmic Beauty of Plants[M]. New York: Spring-Verlag, 1990: 101-107. SARABANDI K and POLATIN P F. Electromagnetic scattering from two adjacent objects[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(4): 510-517. doi: 10.1109/8.286219. MOGHADDAM M and SAATCHI S. Analysis of scattering mechanisms in SAR imagery over boreal forest: Results from BOREAS93[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(5): 1290-1296. doi: 10.1109/ 36.469495. -
計(jì)量
- 文章訪問數(shù): 1299
- HTML全文瀏覽量: 131
- PDF下載量: 331
- 被引次數(shù): 0