一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

面向癲癇腦電圖信號識別的徑向基最小最大概率分類樹

鄧趙紅 陳俊勇 劉解放 王士同

鄧趙紅, 陳俊勇, 劉解放, 王士同. 面向癲癇腦電圖信號識別的徑向基最小最大概率分類樹[J]. 電子與信息學(xué)報, 2016, 38(11): 2848-2855. doi: 10.11999/JEIT160082
引用本文: 鄧趙紅, 陳俊勇, 劉解放, 王士同. 面向癲癇腦電圖信號識別的徑向基最小最大概率分類樹[J]. 電子與信息學(xué)報, 2016, 38(11): 2848-2855. doi: 10.11999/JEIT160082
DENG Zhaohong, CHEN Junyong, LIU Jiefang, WANG Shitong. Radial Basis Minimax Probability Classification Tree for Epilepsy ElectroEncephaloGram Signal Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2848-2855. doi: 10.11999/JEIT160082
Citation: DENG Zhaohong, CHEN Junyong, LIU Jiefang, WANG Shitong. Radial Basis Minimax Probability Classification Tree for Epilepsy ElectroEncephaloGram Signal Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2848-2855. doi: 10.11999/JEIT160082

面向癲癇腦電圖信號識別的徑向基最小最大概率分類樹

doi: 10.11999/JEIT160082
基金項(xiàng)目: 

江蘇省杰出青年基金(BK20140001),上海市科學(xué)技術(shù)委員會揚(yáng)帆項(xiàng)目(14YF1411000),上海市教委創(chuàng)新項(xiàng)目(14YZ131)

Radial Basis Minimax Probability Classification Tree for Epilepsy ElectroEncephaloGram Signal Recognition

Funds: 

The Youth Fund of Jiangsu Province (BK20140001), YangFan Project of Shanghai Municipal Science and Technology Commission(Grant No. 14YF1411000), The Innovation Program of Shanghai Municipal Education Commission (Grant No. 14YZ131)

  • 摘要: 腦電圖(EEG)信號檢測和識別是癲癇病的重要診斷手段。徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)具有出色的逼近能力和泛化性能,能直接識別出不同狀態(tài)的腦電信號,但其透明性和可解釋性差,忽視了不同類別數(shù)據(jù)間可分性的不同。對此,該文提出一種基于徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)和最小最大概率決策技術(shù)的分類樹,采用一對一策略和排除法,更多考慮了類間可分性的不同。針對腦電信號識別的實(shí)驗(yàn)表明,所提方法結(jié)構(gòu)清晰,分類能力強(qiáng),可解釋性更好。
  • VENEMA V, AMENT F, and SIMMER C. A stochastic iterative amplitude adjusted Fourier transform algorithm with improved accuracy[J]. Nonlinear Processes in Geophysics, 2006, 13(3): 321-328. doi: 10.5194/npg-13- 321-2006.
    POLAT K and GNES S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform[J]. Applied Mathematics Computation, 2007, 187(2): 1017-1026. doi: 10.1016/j.amc. 2006.09.022.
    INAN G and ELIF DERYA U. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients[J]. Journal of Neuroscience Methods, 2005, 148(2): 113-121. doi: 10.1016/j.jneumeth.2005.04.013.
    SUBASI A. EEG signal classification using wavelet feature extraction and a mixture of expert model[J]. Expert Systems with Applications, 2007, 32(4): 1084-1093. doi: 10.1016/ j.eswa.2006.02.005.
    王登, 苗奪謙, 王睿智. 一種新的基于小波包分解的EEG特征抽取與識別方法研究[J]. 電子學(xué)報, 2013, 41(1): 193-198. doi: 10.3969/j.issn.0372-2112.2013.01.33.
    WANG Deng, MIAO Duoqian, and WANG Ruizhi. A new method of EEG classification with feature extraction based on wavelet packet decomposition[J]. Acta Electronica Sinica, 2013, 41(1): 193-198. doi: 10.3969/j.issn.0372-2112.2013. 01.33.
    SRINIVASAN V, ESWARAN C, and SRIRAAM A N. Artificial neural network based epileptic detection using time-domain and frequency-domain features[J]. Journal of Medical Systems, 2005, 29(6): 647-660. doi: 10.1007/ s10916-005-6133-1.
    VAIRAVAN S, CHIKKANNAN E, and NATARAJAN S. Approximate entropy-based epileptic EEG detection using artificial neural networks[J]. IEEE Transactions on Information Technology in Biomedicine, 2007, 11(3): 288-295. doi: 10.1109/TITB.2006.884369.
    ORHAN U, HEKIM M, and OZER M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model[J]. Expert Systems with Applications, 2011, 38(10): 13475-13481. doi: 10.1016/ j.eswa.2011.04.149.
    ASLAN K and HSAHIN B. A radial basis function neural network model for classification of epilepsy using EEG signals[J]. Journal of Medical Systems, 2008, 32(5): 403-408. doi: 10.1007/s10916-008-9145-9.
    連可, 陳世杰, 周建明, 等. 基于遺傳算法的SVM多分類決策樹優(yōu)化算法研究[J]. 控制與決策, 2009, 24(1): 7-12. doi: 10.3321/j.issn:1001-0920.2009.01.002.
    LIAN Ke, CHEN Shijie, ZHOU Jianming , et al. Study on GA-based SVM multi-class classification decision-tree optimization agorithm[J]. Control and Decision, 2009, 24(1): 7-12. doi: 10.3321/j.issn:1001-0920.2009.01.002.
    LANCKRIET G, GHAOUI L E, BHATTACHARYYA C, et al. Minimax probability machine[C]. Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada. 2001: 801-807.
    LANCKRIET G R G, GHAOUI L E, BHATTACHARYYA C, et al. A robust minimax approach to classification[J]. The Journal of Machine Learning Research, 2002, 3(Dec): 555-582. doi: 10.1162/153244303321897726.
    DENG Z, CAO L, JIANG Y, et al. Minimax probability TSK fuzzy system classifier: A more transparent and highly interpretable classification model[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4): 813-826. doi: 10.1109/TFUZZ. 2014.2328014.
    RUBIO-SOLIS A and PANOUTSOS G. Interval type-2 radial basis function neural network: A modeling framework[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(2): 457-473. doi: 10.1109/TFUZZ.2014.2315656.
    陳聰, 王士同. 基于模糊分組和監(jiān)督聚類的RBF回歸性能改進(jìn)[J]. 電子與信息學(xué)報, 2009, 31(5): 1157-1160.
    CHEN Cong and WANG Shitong. Improved RBF regression using fuzzy partition and supervised fuzzy custering[J]. Journal of Electronics Information Technology, 2009, 31(5): 1157-1160.
    ROTH P M, HIRZER M, KSTINGER M, et al. Mahalanobis Distance Learning for Person Re-identification [M]. London: Person Re-Identification, 2014: 247-267. doi: 10.1007/978-1-4471-6296-4_12.
    Kang S, Cho S, and Kang P. Constructing a multi-class classifier using one-against-one approach with different binary classifiers[J]. Neurocomputing, 2014, 149, Part B(PB): 677-682. doi: 10.1016/j.neucom.2014.08.006.
    GALAR M, FERN?NDEZ A, and BARRENECHEA E. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes[J]. Pattern Recognition, 2011, 44(8): 1761-1776. doi: 10.1016/j.patcog.2011.01.017.
    ANDRZEJAK R G, LEHNERTZ K, MORMANN F, et al. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state[J]. Physical Review E, 2001, 64(6): 061907. doi: 10.1103/PhysRevE.64. 061907.
    PARVEZ M Z and PAUL M. Epileptic seizure detection by analyzing EEG signals using different transformation techniques[J]. Neurocomputing, 2014, 145(18): 190-200. doi: 10.1016/j.neucom.2014.05.044.
    ROY V and SHUKLA S. Automatic removal of artifacts from EEG signal based on spatially constrained ICA using daubechies wavelet[J]. International Journal of Modern Education and Computer Science (IJMECS), 2014, 6(7): 31-39. doi: 10.5815/ijmecs.2014.07.05.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1092
  • HTML全文瀏覽量:  119
  • PDF下載量:  471
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-01-19
  • 修回日期:  2016-06-08
  • 刊出日期:  2016-11-19

目錄

    /

    返回文章
    返回