基于頻域超分辨的高速目標(biāo)參數(shù)估計(jì)算法
doi: 10.11999/JEIT160058
-
2.
(中國電子科技集團(tuán)公司第五十四研究所 石家莊 050081) ②(南京理工大學(xué)電子工程與光電技術(shù)學(xué)院 南京 210094)
基金項(xiàng)目:
國家863計(jì)劃項(xiàng)目(2013AA122105)
Parameters Estimation of High Speed Targets Based on Frequency Domain Super-resolution
-
2.
(The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China)
Funds:
The National 863 Program of China (2013AA 122105)
-
摘要: 針對寬帶噪聲雷達(dá)高速目標(biāo)探測中參數(shù)估計(jì)性能與運(yùn)算復(fù)雜度無法兼顧的問題,該文提出一種基于頻域超分辨的參數(shù)估計(jì)算法。該算法通過設(shè)置不同固定時(shí)延得到多組含有不同相位信息的組合噪聲調(diào)頻信號(hào),并對每組信號(hào)進(jìn)行不含尺度變換的匹配濾波運(yùn)算,以此來構(gòu)造多普勒相位差組。根據(jù)多普勒相位差組與陣列信號(hào)處理的相似性,利用現(xiàn)代譜估計(jì)算法得到目標(biāo)的速度信息,構(gòu)造多普勒補(bǔ)償函數(shù)進(jìn)行包含尺度變換的匹配濾波運(yùn)算估計(jì)出目標(biāo)的距離信息。該算法可以在無需考慮多普勒色散的情況下估計(jì)出目標(biāo)速度,整個(gè)運(yùn)算過程僅需1次時(shí)域重構(gòu)運(yùn)算;當(dāng)多普勒相位差組的固定時(shí)延及分組數(shù)選擇合適時(shí),其運(yùn)算復(fù)雜度及參數(shù)估計(jì)性能皆優(yōu)于曲面擬合的寬帶互模糊函數(shù)算法。仿真結(jié)果驗(yàn)證了該算法的有效性。
-
關(guān)鍵詞:
- 寬帶噪聲雷達(dá) /
- 多普勒色散 /
- 多普勒相位差組 /
- 頻域超分辨
Abstract: To solve the contradiction between estimation performance and computation burden, when detecting high speed target in wideband noise radar, a novel method based on Frequency Domain Supper-Resolution (FDSR) is proposed for parameter estimation. Firstly, a group of component noise frequency modulation signals with different phase information are obtained by setting different fixed delay, and the Doppler phase difference group is constructed through matched filtering without scaling transform. Then according to the similarity of Doppler phase difference group and array signal processing, the velocity is acquired through modern spectrum estimation algorithm, and the range is calculated by scaled matched filtering after Doppler compensation. In this method, the velocity is obtained without considering Doppler dispersion and the time-domain reconstruction is used only once in the whole algorithm. The computation burden and estimation performance both superior to wideband cross ambiguity function algorithm based on curve fitting, when the fixed delay and group number of Doppler phase difference group are appropriately selected. The effectiveness of this algorithm is validated by simulation results. -
ZHOU X L, WANG H Q, CHENG Y Q, et al. Statistical angular resolution limit for ultrawideband MIMO noise radar[J]. International Journal of Antennas and Propagation, 2015: 440-443. doi: 10.1155.2015.906313. HERMAN J N, REINHARD F, and ANDREAS S. A fully-integrated 77-GHz UWB pseudo-random noise radar transceiver with a programmable sequence generator in SiGe technology[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(8): 2444-2455. doi: 10.1109/ TCSI.2014.2309774. YANG Q L, ZHANG Y H, and GU X. Wide-band chaotic noise signal for velocity estimation and imaging of high-speed moving targets[J]. Progress in Electromagnetics Research B, 2015, 63: 1-15. doi: 10.2528/PIERB15030402. SHASTRY M, NARAYANAN R M, and RANGASWAMY M. Sparsity-based signal processing for noise radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 314-325. doi: 10.1109/TAES.2014.130733. KELLY E J and WISHNER R P. Matched-filter theory for high-velocity, accelerating targets[J]. IEEE Transactions on Military Electronics, 1965, 9(1): 56-69. doi: 10.1109/TME. 1965.4323176. JIN Q, WONG K M, and LUO Z Q. The estimation of time delay and Doppler stretch of wideband signals[J]. IEEE Transactions on Signal Processing, 1995, 43(4): 904-916. doi: 10.1109/78.376843. SINTSYN R B and YANOVSKY F J. Wideband ambiguity function in radar and navigation systems[C]. IEEE 3rd International Conference on Methods and Systems of Navigation and Motion Control (MSNMC) Proceedings, Kiev, Ukraine, 2014: 66-71. GIUNTA G. Fast estimators of time delay and Doppler stretch based on discrete-time methods[J]. IEEE Transactions on Signal Processing, 1998, 46(7): 1785-1797. doi: 10.1109/78.700948. HO K C and CHAN Y T. Optimum discrete wavelet scaling and its application to delay and Doppler estimation[J]. IEEE Transactions on Signal Processing, 1998, 46(9): 2285-2290. doi: 10.1109/78.709507. 王釗, 顧紅, 蘇衛(wèi)民, 等. 基于組合噪聲調(diào)頻信號(hào)的高速目標(biāo)參數(shù)估計(jì)[J]. 系統(tǒng)工程與電子技術(shù), 2015, 37(9): 1953-1959. doi: 10.3969/j.issn.1001-506X.2015.09.01. WANG Zhao, GU Hong, SU Weimin, et al. Parameters estimation of high speed target based on component noise frequency modulation signal[J]. Systems Engineering and Electronics, 2015, 37(9): 1953-1959. doi: 10.3969/j.issn.1001- 506X.2015.09.01. DAWOOD M, QURAISHI N, and ALEJOS A V. Superresolution Doppler estimation using UWB random noise signals and MUSIC[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 325-340. doi: 10.1109/TAES.2013.6404106. YANG L, SU W, GU H, et al. High resolution velocity estimation and range profile analysis of moving target for pulse LFM UWB radar[J]. Signal Processing, 2011, 91(10): 2420-2425. doi: 10.1016/j.sigpro.2011.04.022. WEISS L G. Wavelets and wideband correlation processing[J]. IEEE Signal Processing Magazine, 1994, 11(1): 13-32. doi: 10.1109/79.252866. 張賢達(dá). 現(xiàn)代信號(hào)處理[M]. 北京: 清華大學(xué)出版社, 2002: 126-135. ZHANG Xianda. Mordem Signal Processing[M]. Beijing: Tsinghua University Press, 2002: 126-135. 王釗, 顧紅, 蘇衛(wèi)民, 等. 寬帶高斯譜噪聲雷達(dá)高速目標(biāo)檢測[J]. 系統(tǒng)工程與電子技術(shù), 2015, 37(6): 1266-1272. doi: 10.3969/j.issn.1001-506X.2015.06.07. WANG Zhao, GU Hong, SU Weimin, et al. Detection of high speed targets in noise radar with wideband Gaussian spectrum[J]. Systems Engineering and Electronics, 2015, 37(6): 1266-1272. doi: 10.3969/j.issn.1001-506X.2015.06.07. KUNDU D. Modified MUSIC algorithm for estimating DOA of signals[J]. Signal Processing, 1996, 48(1): 85-90. doi: 10.1016/0165-1684(95)00126-3. -