基于無線信道參數(shù)的物理層安全密鑰容量
doi: 10.11999/JEIT160032
基金項目:
國家863計劃項目(2015AA01A708),國家自然科學(xué)基金(61171108, 61471396)
Physical Layer Secret Key Capacity Based on Wireless Channel Parameters
Funds:
The National 863 Program of China (2015AA01A708), The National Natural Science Foundation of China (61171108, 61471396)
-
摘要: 利用無線信道參數(shù)提取物理層安全密鑰時,密鑰容量受加性噪聲、信道測量時差、終端移動速度、采樣周期和采樣點數(shù)等因素影響。針對這一問題,該文在均勻散射環(huán)境中利用單輸入單輸出無線信道定量分析密鑰容量,推導(dǎo)了密鑰容量的閉式解以確定最佳采樣周期的約束條件。仿真分析表明該結(jié)論同樣適用于非均勻散射環(huán)境,同時驗證將物理層密鑰提取技術(shù)應(yīng)用于無線通信系統(tǒng)的可行性。
-
關(guān)鍵詞:
- 物理層安全 /
- 物理層密鑰提取 /
- 密鑰容量 /
- 無線信道參數(shù) /
- 最佳采樣周期
Abstract: Physical layer secret key capacity is affected by such factors as additive noise, the time difference of channel sampling, terminals moving speed, sampling period, and the number of samples, whose effects on the physical layer secret key capacity are analyzed quantitatively using the single-input single-output wireless channel over the uniform scattering environment. Specifically, a closed-form solution to the secret key capacity is derived to determine the constraints on the optimal sampling period. Analysis and simulation results reveal that the results can also be applied to the nonuniform scattering environment. Furthermore, the feasibility to utilize the physical layer secret key extraction techniques in the mobile communication systems is verified. -
SHEHADEH Y E H and HOGREFE D. A survey on secret key generation mechanisms on the physical layer in wireless networks[J]. Security and Communication Networks, 2015, 8(2): 332-341. doi: 10.1002/sec.973. WANG T, LIU Y, and VASILAKOS A V. Survey on channel reciprocity based key establishment techniques for wireless systems[J]. Wireless Networks, 2015, 21(6): 1835-1846. doi: 10.1007/s11276-014-0841-8. PREMNATH S N, JANA S, CROFT J, et al. Secret key extraction from wireless signal strength in real environments[J]. IEEE Transactions on Mobile Computing, 2013, 12(5): 917-930. doi: 10.1109/TMC.2012.63. CHOU T H, DRAPER S C, and SAYEED A M. Key generation using external source excitation: capacity, reliability, and secrecy exponent[J]. IEEE Transactions on Information Theory, 2012, 58(4): 2455-2474. doi: 10.1109/ TIT.2011.2176311. LIU Y, DRAPER S C, and SAYEED A M. Exploiting channel diversity in secret key generation from multipath fading randomness[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(5): 1484-1497. doi: 10.1109/ TIFS.2012.2206385. WALLACE J W and SHARMA R K. Automatic secret keys from reciprocal MIMO wireless channels: Measurement and analysis[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(3): 381-392. doi: 10.1109/TIFS.2010. 2052253. TSOURI G R and WAGNER D M. Threshold constraints on symmetric key extraction from rician fading estimates[J]. IEEE Transactions on Mobile Computing, 2013, 12(12): 2496-2506. doi: 10.1109/TMC.2012.226. 戴嶠, 宋華偉, 金梁, 等. 基于等效信道的物理層認(rèn)證和密鑰分發(fā)機制[J]. 中國科學(xué): 信息科學(xué), 2014, 44(12): 1580-1592. doi: 10.1360/N112013-00041. DAI Q, SONG H W, JIN L, et al. Physical-layer authentication and key distribution mechanism based on equivalent channel[J]. Scientia Sinica Informationis, 2014, 44(12): 1580-1592. doi: 10.1360/N112013-00041. MAURER U M. Secret key agreement by public discussion from common information[J]. IEEE Transactions on Information Theory, 1993, 39(3): 733-742. doi: 10.1109/18. 256484. AHLSWEDE R and CSISZ R I. Common randomness in information theory and cryptography. Part I: Secret sharing[J]. IEEE Transactions on Information Theory, 1993, 39(4): 1121-1132. doi: 10.1109/18.243431. AHLSWEDE R and CSISZ R I. Common randomness in information theory and cryptography. Part II: CR capacity[J]. IEEE Transactions on Information Theory, 1998, 44(1): 225-240. doi: 10.1109/18.651026. PATWARI N, CROFT J, JANA S, et al. High-rate uncorrelated bit extraction for shared secret key generation from channel measurements[J]. IEEE Transactions on Mobile Computing, 2010, 9(1): 17-30. doi: 10.1109/TMC. 2009.88. SHEHADEH Y E H, ALFANDI O, and HOGREFE D. On improving the robustness of physical-layer key extraction mechanisms against delay and mobility[C]. Proceedings of International Wireless Communications and Mobile Computing Conference, Limassol, Cyprus, 2012: 1028-1033. doi: 10.1109/IWCMC.2012.6314347. SHEHADEH Y E H, ALFANDI O, and HOGREFE D. Towards robust key extraction from multipath wireless channels[J]. Journal of Communications and Networks, 2012, 14(4): 385-395. doi: 10.1109/JCN.2012.6292245. NITINAWARAT S and NARAYAN P. Secret key generation for correlated Gaussian sources[J]. IEEE Transactions on Information Theory, 2012, 58(6): 3373-3391. doi: 10.1109/ TIT.2012.2184075. WU X F, SONG Y, ZHAO C, et al. Secrecy extraction from correlated fading channels: an upper bound[C]. Proceedings of International Conference on Wireless Communications Signal Processing, Nanjing, China, 2009: 1-3. doi: 10.1109/ WCSP.2009.5371757. CHEN C and JENSEN M. Secret key establishment using temporally and spatially correlated wireless channel coefficients[J]. IEEE Transactions on Mobile Computing, 2011, 10(2): 205-215. doi: 10.1109/TMC.2010.114. CLARKE R. A statistical theory of mobile-radio reception [J]. Bell System Technical Journal, 1968, 47(6): 957-1000. doi: 10.1002/j.1538-7305.1968.tb00069.x. JAKES W C and COX D C. Microwave Mobile Communications[M]. New Jersey: Wiley-IEEE Press, 1994: 13-39. GOLDSMITH A. Wireless Communications[M]. Cambridge: Cambridge University Press, 2005: 63-76. COVER T M and THOMAS J A. Elements of Information Theory[M]. New York: John Wiley Sons, 2012: 247-252. ZENG X and DURRANI T. Estimation of mutual information using copula density function[J]. Electronics Letters, 2011, 47(8): 493-494. doi: 10.1049/el.2011.0778. MA J and SUN Z. Mutual information is copula entropy[J]. Tsinghua Science Technology, 2011, 16(1): 51-54. doi: 10.1016/S1007-0214(11)70008-6. 韓敏, 劉曉欣. 基于Copula熵的互信息估計方法[J]. 控制理論與應(yīng)用, 2013, 30(7): 875-879. doi: 10.7641/CTA.2013. 21262. HAN M and LIU X X. Mutual information estimation based on Copula entropy[J]. Control Theory Applications, 2013, 30(7): 875-879. doi: 10.7641/CTA.2013. 21262. FONT N F P and ESPI EIRA P M. Modelling the Wireless Propagation Channel: a Simulation Approach with Matlab [M]. New York: John Wiley Sons, 2008: 105-111. STEFANIA S, ISSAM T, and MATTHEW B. LTE, the UMTS Long Term Evolution: from Theory to Practice[M]. New York: John Wiley Sons, 2009: 430-453. -
計量
- 文章訪問數(shù): 1524
- HTML全文瀏覽量: 128
- PDF下載量: 399
- 被引次數(shù): 0