一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于深度置信網(wǎng)絡(luò)和雙譜對角切片的低截獲概率雷達(dá)信號識別

王星 周一鵬 周東青 陳忠輝 田元榮

王星, 周一鵬, 周東青, 陳忠輝, 田元榮. 基于深度置信網(wǎng)絡(luò)和雙譜對角切片的低截獲概率雷達(dá)信號識別[J]. 電子與信息學(xué)報, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031
引用本文: 王星, 周一鵬, 周東青, 陳忠輝, 田元榮. 基于深度置信網(wǎng)絡(luò)和雙譜對角切片的低截獲概率雷達(dá)信號識別[J]. 電子與信息學(xué)報, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031
WANG Xing, ZHOU Yipeng, ZHOU Dongqing, CHEN Zhonghui, TIAN Yuanrong. Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031
Citation: WANG Xing, ZHOU Yipeng, ZHOU Dongqing, CHEN Zhonghui, TIAN Yuanrong. Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031

基于深度置信網(wǎng)絡(luò)和雙譜對角切片的低截獲概率雷達(dá)信號識別

doi: 10.11999/JEIT160031
基金項(xiàng)目: 

國家自然科學(xué)基金(61372167),航空科學(xué)基金(20152096019)

Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice

Funds: 

The National Natural Science Foundation of China (61372167), The Aeronautical Science Foundation of China (20152096019)

  • 摘要: 基于深度置信網(wǎng)絡(luò)(DBN)對信號雙譜對角切片(BDS)結(jié)構(gòu)特征進(jìn)行學(xué)習(xí),實(shí)現(xiàn)低截獲概率(LPI)雷達(dá)信號識別。該方法首先建立基于受限玻爾茲曼機(jī)(RBM)的DBN模型,對LPI雷達(dá)信號的BDS數(shù)據(jù)進(jìn)行逐層無監(jiān)督貪心學(xué)習(xí),然后運(yùn)用后向傳播(BP)機(jī)制在有監(jiān)督學(xué)習(xí)方式下根據(jù)學(xué)習(xí)誤差對DBN模型參數(shù)進(jìn)行微調(diào),最后基于該BDS-DBN模型實(shí)現(xiàn)未知信號的分類和識別。理論分析和仿真結(jié)果表明,信噪比高于8 dB時,基于BDS和DBN的識別方法對調(diào)頻連續(xù)波(FMCW), Frank, Costas, FSK/PSK 4類LPI信號的綜合識別率保持在93.4%以上,高于傳統(tǒng)的主成分分析加支持向量機(jī)法(PCA-SVM)和主成分分析加線性判別分析法(PCA-LDA)。
  • PHILLIP E P. Detecting and Classing Low Probability of Intercept Radar (Second Edition)[M]. Norwood, MA, USA, Artech House, 2009: 1-15.
    LIU Y J, XIAO P, WU H C, et al. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 973-981. doi: 10.1109/JSEE.2015.00106.
    李娜, 王珂, 李保珠. 低截獲概率雷達(dá)信號檢測方法的優(yōu)化及應(yīng)用[J]. 光學(xué)精密工程, 2014, 22(11): 3122-3128. doi: 10. 3788/OPE. 20142211.3122.
    LI Na, WANG Ke, and LI Baozhu. Optimization and application of LPI radar signal detection method[J]. Optics and Precision Engineering, 2014, 22(11): 3122-3128. doi: 10.3788/OPE. 20142211.3122.
    蔡忠偉, 李建東. 基于雙譜的通信輻射源個體識別[J]. 通信學(xué)報, 2006, 28(2): 75-79. doi: 10.3321/j.issn:1000-436x.2007.02. 012.
    CAI Zhongwei and LI Jiandong. Study of transmitter individual identification based on bispectra[J]. Journal on Communications, 2006, 28(2): 75-79. doi: 10.3321/j.issn: 1000-436x.2007.02.012.
    王世強(qiáng), 張登福, 畢篤彥, 等. 雙譜二次特征在雷達(dá)信號識別中的應(yīng)用[J]. 西安電子科技大學(xué)學(xué)報(自然科學(xué)版), 2012, 39(2): 127-132. doi: 10.3969/j.issn.1001-2400.2012.02.021.
    WANG Shiqiang, ZHANG Dengfu, BI Duyan, et al. Research on recognizing the radar signal using the bispectrum cascade feature[J]. Journal of Xidian University, 2012, 39(2): 127-132. doi: 10.3969/j.issn.1001-2400.2012.02.021.
    徐書華, 黃本雄, 徐麗娜. 基于SIB/PCA的通信輻射源個體識別[J]. 華中科技大學(xué)學(xué)報(自然科學(xué)版), 2008, 36(7): 14-17. doi: 10.3321/j.issn:1671-4512.2008.07.004.
    XU Shuhua, HUANG Benxiong, and XU Lina. Identification of individual radio transmitters using SIB/PCA[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2008, 36(7): 14-17. doi: 10.3321/j.issn:1671- 4512.2008.07.004.
    胡振, 傅昆, 張長水. 基于深度學(xué)習(xí)的作曲家分類問題[J] . 計算機(jī)研究與發(fā)展, 2014, 51(9): 1945-1954. doi: 10.7544/issn. 1000-1239.2014.20140189.
    HU Zhen, FU Kun, and ZHANG Changshui. Audio classical composer identification by deep neural network[J]. Journal of Computer Research and Development, 2014, 51(9): 1945-1954. doi: 10.7544/issn.1000-1239.2014.20140189.
    SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2014, 61: 85-117. doi: 10.1016/ j.neunet.2014.09.003.
    尹寶才, 王文通, 王立春. 深度學(xué)習(xí)研究綜述[J]. 北京工業(yè)大學(xué)學(xué)報, 2015, 41(1): 48-59. doi: 10.11936/bjutxb2014100026.
    YIN Baocai, WANG Wentong, and WANG Lichun. Review of deep learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59. doi: 10.11936/bjutxb2014100026.
    HINTON G E, OSINDERO S, and TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.doi: 10.1162/neco.2006.18.7.1527.
    SARIKAYA R, HINTON G E, and DEORAS A. Application of deep belief networks for natural language understanding[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2014, 22(4): 778-784. doi: 10.1109/TASLP. 2014.2303296.
    HINTON G, LI D, DONG Y, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. doi: 10.1109/MSP.2012.2205597.
    TABOADA and FERNANDO L. Detection and classification of low probability of intercept radar signals using parallel filter arrays and higher order statistics[D]. [Ph.D. dissertation], Naval Postgraduate School, 2002.
    張旭. 基于信號分析的無線設(shè)備指紋特征提取[D]. [碩士論文], 北京郵電大學(xué), 2014: 13-14.
    ZHANG Xu. Wireless devices fingerprint feature extraction based on signal analysis[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2014: 13-14.
  • 加載中
計量
  • 文章訪問數(shù):  2166
  • HTML全文瀏覽量:  346
  • PDF下載量:  685
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-01-16
  • 修回日期:  2016-07-14
  • 刊出日期:  2016-11-19

目錄

    /

    返回文章
    返回