一種啟發(fā)式變階直覺(jué)模糊時(shí)間序列預(yù)測(cè)模型
doi: 10.11999/JEIT160013
-
1.
(空軍工程大學(xué)防空反導(dǎo)學(xué)院 西安 710051) ②(西安通信學(xué)院 西安 710106)
基金項(xiàng)目:
國(guó)家自然科學(xué)青年基金項(xiàng)目(61402517)
A Heuristic Adaptive-order Intuitionistic Fuzzy Time Series Forecasting Model
-
1.
(Air and Missile Defense College, Air Force Engineering University, Xi&rsquo
-
2.
(Xi&rsquo
Funds:
The National Natural Science Foundation of China (61402517)
-
摘要: 論文針對(duì)已有高階模糊時(shí)間序列模型在預(yù)測(cè)精度和預(yù)測(cè)范圍上的限制,結(jié)合直覺(jué)模糊集理論,提出一種啟發(fā)式變階直覺(jué)模糊時(shí)間序列預(yù)測(cè)模型。模型首先應(yīng)用直接模糊聚類算法對(duì)論域進(jìn)行非等分劃分;然后,針對(duì)直覺(jué)模糊時(shí)間序列的數(shù)據(jù)特性,改進(jìn)現(xiàn)有直覺(jué)模糊集隸屬度和非隸屬度函數(shù)的建立方法;最后,采用階數(shù)隨序列實(shí)時(shí)變化的高階預(yù)測(cè)規(guī)則進(jìn)行預(yù)測(cè),并將歷史數(shù)據(jù)發(fā)展趨勢(shì)的啟發(fā)知識(shí)引入解模糊過(guò)程,使模型的預(yù)測(cè)范圍得到擴(kuò)展。在Alabama大學(xué)入學(xué)人數(shù)和北京市日均氣溫兩組數(shù)據(jù)集上分別與典型方法進(jìn)行對(duì)比實(shí)驗(yàn),結(jié)果表明該模型有效克服了傳統(tǒng)模型的缺點(diǎn),擁有較高的預(yù)測(cè)精度,證明了模型的有效性和優(yōu)越性。
-
關(guān)鍵詞:
- 直覺(jué)模糊集 /
- 時(shí)間序列預(yù)測(cè) /
- 啟發(fā)式 /
- 變階
Abstract: Considering that the existing high-order models have limitations in forecast range and accuracy, a heuristic adaptive-order intuitionistic fuzzy time series forecasting model is built with the combination of the intuitionistic fuzzy sets theory. In this model, a direct fuzzy clustering algorithm is used to partition the universe of discourse into unequal intervals. The traditional method of ascertaining the membership and non-membership functions of intuitionistic fuzzy set are also modified to fit the intuitionistic fuzzy time series data. On these basis, variable high-order forecasting rules are established and the prior knowledge of tendency is used in defuzzification to extend the forecasting range. At last, contrast experiments on the enrollments of the University of Alabama and the daily average temperature of Beijing are carried out. The results show that the new model has a clear advantage of improving the forecast accuracy.-
Key words:
- Intuitionistic fuzzy set /
- Time series forecast /
- Heuristic /
- Adaptive order
-
SONG Q and CHISSOM B S. Fuzzy time series and its models[J]. Fuzzy Sets and Systems, 1993, 54(1): 269-277. doi: 10.1016/0165-0114(93)90372-O. SONG Q and CHISSOM B S. Forecasting enrollments with fuzzy time series-Part I[J]. Fuzzy Sets and Systems, 1993, 54(1): 1-9. doi: 10.1016/0165-0114(93)90355-L. SONG Q and CHISSOM B S. Forecasting enrollments with fuzzy time seriesPart II[J]. Fuzzy Sets and System, 1994, 62(1): 1-8. doi: 10.1016/0165-0114(94)90067-1. EFENDI R, ISMAIL Z, and DERIS M M. A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand[J]. Applied Soft Computing, 2015, 28(3): 422-430. doi: 10.1016/j.asoc.2014.11.043. SUN Baiqing, GUO Haifeng, KARIMI H R, et al. Prediction of stock index futures prices based on fuzzy sets and multivariate fuzzy time series[J]. Neurocomputing, 2015, 151(3): 1528-1536. doi: 10.1016/j.neucom.2014.09.018. TSAUR R C and KUO T C. Tourism demand forecasting using a novel high-precision fuzzy time series model[J]. International Journal of Innovative Computing, Information and Control, 2014, 10(2): 695-701. HUANG K and YU T H-K. Ratio-based lengths of intervals to improve fuzzy time series forecasting[J]. IEEE Transactions on Systems, Man, and CyberneticsPart B: Cybernetics, 2006, 36(2): 328-340. doi: 10.1109/TSMCB.2005.857093. CAI Qisen, ZHANG Defu, ZHENG Wei, et al. A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression[J]. Knowledge-Based Systems, 2015, 74(1): 61-68. doi: 10.1016/j.knosys.2014.11.003. IZAKIAN H, PEDRYCZ W, and JAMAL I. Fuzzy clustering of time series data using dynamic time warping distance[J]. Engineering Applications of Artificial Intelligence, 2015, 39(3): 235-244. doi: 10.1016/j.engappai.2014.12.015. LU Wei, CHEN Xueyan, PEDRYCZ W, et al. Using interval information granules to improve forecasting in fuzzy time series[J]. International Journal of Approximate Reasoning, 2015, 57(2): 1-18. doi: 10.1016/j.ijar.2014.11.002. ABDOLLAHZADE M, MIRANIAN A, HASSANI H, et al. A new hybrid enhanced local linear neuro-fuzzy model based on the optimized singular spectrum analysis and its application for nonlinear and chaotic time series forecasting[J]. Information Sciences, 2015, 295(2): 107-125. doi: 10.1016/ j.ins.2014.09.002. CHENG S H, CHEN S M, and JIAN W S. Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures[J]. Information Sciences, 2016, 327(1): 272-287. doi: 10.1016/j.ins.2015.08.024. PENG Hungwen, WU Shenfu, WEI Chiaching, et al. Time series forecasting with a neuro-fuzzy modeling scheme[J]. Applied Soft Computing, 2015, 32(7): 481-493. doi: 10.1016/ j.asoc.2015.03.059. CHEN M Y and CHEN B T. Online fuzzy time series analysis based on entropy discretization and a fast Fourier transform[J]. Applied Soft Computing, 2014, 14(1): 156-166. doi: 10.1016/j.asoc.2013.07.024. DENG W, WANG G, and ZHANG X. A novel hybrid water quality time series prediction method based on cloud model and fuzzy forecasting[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149(12): 39-49. doi: 10.1016/ j.chemolab.2015.09.017. PEREIRA C M, ALMEIDA N N, and VELLOSO M. Fuzzy modeling to forecast an electric load time series[J]. Procedia Computer Science, 2015, 55: 395-404. doi: 10.1016/j.procs. 2015.07.089. SINGH P and BORAH B. Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization[J]. International Journal of Approximate Reasoning, 2014, 55(3): 812-833. doi: 10.1016/j.ijar.2013. 09.014. CHEN S M and CHEN S W. Fuzzy forecasting based on two-factor second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships[J]. IEEE Transactions on Cybernetics, 2015, 45(3): 405-417. doi: 10.1109/TCYB.2014.2326888. HWANG J R, CHEN S M, and LEE C H. Handling forecasting problems using fuzzy time series[J]. Fuzzy Sets and Systems, 1998, 100(1): 217-228. doi: 10.1016/S0165-0114(97)00121-8. LIU Haotien and WEI Maolen. An improved fuzzy forecasting method for seasonal time series[J]. Expert Systems with Applications, 2010, 37(9): 6310-6318. doi: 10.1016/ j.eswa.2010.02.090. SINGH P and BORACH B. High-order fuzzy-neuro expert system for time series forecasting[J]. Knowledge-Based Systems, 2013, 46(7): 12-21. doi: 10.1016/j.knosys.2013. 01.030. ASKARI S and MONTAZERIN N. A high-order multi-variable fuzzy time series forecasting algorithm based on fuzzy clustering[J]. Expert Systems with Applications, 2015, 42(4): 2121-2135. doi: 10.1016/j.eswa.2014.09.036. CASTILLO O, ALANIS A, GARCIA M, et al. An intuitionistic fuzzy system for time series analysis in plant monitoring and diagnosis[J]. Applied Soft Computing, 2007, 7(4): 1227-1233. doi: 10.1016/j.asoc.2006.01.010. JOSHI B P and KUMAR S. Intuitionistic fuzzy sets based method for fuzzy time series forecasting[J]. Cybernetics and Systems: An International Journal, 2012, 43(1): 34-47. doi: 10.1080/01969722.2012.637014. 鄭寇全, 雷英杰, 王睿, 等. 直覺(jué)模糊時(shí)間序列建模及應(yīng)用[J]. 控制與決策, 2013, 28(10): 1525-1530. ZHENG Kouquan, LEI Yingjie, WANG Rui, et al. Modeling and application of IFTS[J]. Control and Decision, 2013, 28(10): 1525-1530. 鄭寇全, 雷英杰, 王睿, 等.參數(shù)自適應(yīng)的長(zhǎng)期IFTS預(yù)測(cè)算法[J]. 系統(tǒng)工程與電子技術(shù), 2014, 36(1): 99-104. doi: 10.3969/ j.issn.1001-506X.2014.01.16. ZHENG Kouquan, LEI Yingjie, WANG Rui, et al. Method of long-term IFTS forecasting based on parameter adaption[J]. Systems Engineering and Electronics, 2014, 36(1): 99-104. doi: 10.3969/j.issn.1001-506X.2014.01.16. 梁保松, 曹殿立. 模糊數(shù)學(xué)極其應(yīng)用[M]. 北京: 科學(xué)出版社, 2007: 65-85. LIANG Baosong and CAO Dianli. Fuzzy Mathematics and Applications[M]. Beijing: Science Press, 2007: 65-85. 雷英杰, 趙杰, 路艷麗, 等. 直覺(jué)模糊集理論及應(yīng)用[M]. 北京: 科學(xué)出版社, 2014: 28-189. LEI Yingjie, ZHAO Jie, LU Yanli, et al. Theories and Applications of Intuitionistic Fuzzy Set[M]. Beijing: Science Press, 2014: 28-189. WANG Yanan, LEI Yingjie, FAN Xiaoshi, et al. Intuitionistic fuzzy time series forecasting model based on intuitionistic fuzzy reasoning[J]. Mathematical Problems in Engineering, 2016(2016): 1-12. doi: 10.1155/2016/5035160. -
計(jì)量
- 文章訪問(wèn)數(shù): 1239
- HTML全文瀏覽量: 120
- PDF下載量: 415
- 被引次數(shù): 0