基于光譜相似度量的高光譜圖像多任務(wù)聯(lián)合稀疏光譜解混方法
doi: 10.11999/JEIT160011
中國(guó)地質(zhì)調(diào)查局地質(zhì)調(diào)查項(xiàng)目(1212011120226),國(guó)家863計(jì)劃(2012AA12A308),中國(guó)科學(xué)院科技服務(wù)網(wǎng)絡(luò)計(jì)劃項(xiàng)目(KFJ- EW-STS-046)
Multi-task Jointly Sparse Spectral Unmixing Method Based on Spectral Similarity Measure of Hyperspectral Imagery
The Geological Survey Program of China Geological Survey (1212011120226), The National 863 Program of China (2012AA12A308), The Science and Technology Services Network Program of Chinese Academy of Sciences (KFJ-EW- STS-046)
-
摘要: 基于圖像中存在的鄰域以及非局部相似等圖像空間特征和聯(lián)合稀疏解混思想,該文提出一種基于高光譜圖像光譜相似性度量的多任務(wù)聯(lián)合稀疏解混方法。通過(guò)高光譜圖像的光譜特性統(tǒng)計(jì)值設(shè)定光譜度量閾值,對(duì)高光譜圖像中相似的像元光譜進(jìn)行光譜相似性度量分組,再對(duì)分組像元光譜數(shù)據(jù)進(jìn)行多任務(wù)聯(lián)合稀疏光譜解混模型的構(gòu)建和求解,得到最終的豐度系數(shù)。模擬數(shù)據(jù)實(shí)驗(yàn)結(jié)果表明,該方法一定程度上提升了現(xiàn)有聯(lián)合稀疏光譜解混方法的豐度估計(jì)精度,真實(shí)數(shù)據(jù)結(jié)果也驗(yàn)證了方法的有效性。
-
關(guān)鍵詞:
- 高光譜圖像 /
- 光譜解混 /
- 聯(lián)合稀疏表示 /
- 光譜相似性度量
Abstract: In this paper, a multi-task jointly sparse spectral unmixing method based on spectral similarity measure of hyperspectral imagery is proposed, which is a refinement of collaborative sparse spectral unmixing method. First, a threshold value is obtained through the statistical characters of some random selected neighboring pixels in hypersepctral image. Second, all pixels of hyperspectral image are grouped by a spectral similarity measure and the threshold value. Then, a multi-task jointly sparse optimization problem is constructed and solved for the grouped pixels, and the abundance coefficients are obtained finally. Experimentals results on synthetic and real hyperspectral image demonstrate the effectiveness of the proposed approach. -
KESHAVE N and MUSTARD J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002, 19(1): 44-57. doi: 10.1109/79.974727. 童慶禧, 張兵, 鄭蘭芬. 高光譜遙感原理、技術(shù)與應(yīng)用[M]. 北京: 高等教育出版社, 2006: 246-248. TONG Qingxi, ZHANG Bing, and ZHENG Lanfen. Hypersepctral Remote SensinuPrinciples, Techniques and Applications[M]. Beijing: Higher Education Press, 2006: 246-248. 浦瑞良, 宮鵬. 高光譜遙感及其應(yīng)用[M]. 北京: 高等教育出版社, 2000: 1-5. PU Ruiliang and GONG Peng. Hyperspectral Remote Sening and Its Application[M]. Beijing: Higher Education Press, 2000: 1-5. HEINZ D C and CHANG C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3): 529-545. doi: 10.1109/36.911111. 耿修瑞, 張兵, 張霞, 等. 一種基于高維空間凸面單形體體積的高光譜圖像解混算法[J]. 自然科學(xué)進(jìn)展, 2004, 14(7): 810-814. GENG Xiurui, ZHANG Bing, ZHANG Xia, et al. An unmixing method of hyperspectral imagery based on convex volume in high dimensional space[J]. Progress in Natureal Science, 2004, 14(7): 810-814 HONEINE P and RICHARD C. Geometric unmixing of large hyperspectral images: A barycentric coordinate approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6): 2185-2195. doi: 10.1109/TGRS.2011.2170999. YUAN Yuan, FU Min, and LU Xiaoqing. Substance dependence constrained sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 2975-2986. doi: 10.1109/TGRS.2014. 2365953. NASCIMENTO J M P and BIOUCAS-DIAS J M. Does independent component analysis play a role in unmixing hyperspectral data?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(1): 175-187. doi: 10.1109/ TGRS.2004.839806. SHI Chen and WANG Le. Incorporating spatial information in spectral unmixing: A review[J]. Remote Sensing of Environment, 2014, 149: 70-87. doi: 10.1016/j.rse.2014.03. 034. BIOUCAS-DIAS J M. A variable splitting augmented Lagragian approach to linear spectral unmixing[C]. First Workshop on Hyperspectral Image Signal Processing: Evolution in Remote Sensing, Grenoble, 2009: 1-4. doi: 10.1109/WHISPERS.2009. 5289072. IORDACHE M D, BIOUCAS-DIAS J M, and PLAZA A. Total variation spatial regularization for sparse hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4484-4502. doi: 10.1109/TGRS.2012. 2191590. ZHONG Yanfei, FENG Ruyi, and ZHANG Liangpei. Non-local sparse unmixing for hyperspectral remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 1889-1909. doi: 10.1109/JSTARS.2013.2280063. CHEN Fen and ZHANG Yan. Sparse hyperspectral unmixing based on constrained lp-l2 optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1142-1146. doi: 10.1109/LGRS.2012.2232901. IORDACHE M D, BIOUCAS-DIAS J M, and PLAZA A. Collaborative sparse regression for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 341354. doi: 10.1109/TGRS.2013.2240001. BIENIARZ J, AGUILERA E, ZHU X X, et al. Joint sparsity model for multilook hyperspectral image unmixing[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 696-700. doi: 10.1109/LGRS.2014.2358623. 王蕊, 李恒超, 尹忠科. 考慮端元差異性的協(xié)同稀疏高光譜解混算法[J]. 電子科技大學(xué)學(xué)報(bào), 2014, 43(6): 813-817. doi: 10. 3969/j.issn.1001-0548.2014.06.003. WANG Rui, LI Hengchao, and YIN Zhongke. Collaborative sparse unmixing of hyperspectral data considering the difference of endmembers[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(6): 813-817. doi: 10.3969/j.issn.1001-0548.2014.06.003. KIM S J, KOH K, LUSTIG M, et al. An interior-point method for large-scale l1-regularized least squares[J]. IEEE Journal of Selected Topics in Signal Processig, 2007, 1(4): 606-617. doi: 10.1109/JSTSP.2007.910971. 劉建軍, 吳澤彬, 韋志輝, 等. 基于空間相關(guān)性約束稀疏表示的高光譜圖像分類[J]. 電子與信息學(xué)報(bào), 2012, 34(11): 2666-2671. doi: 10.3724/SP.J.1146.2012.00577. LIU Jianjun, WU Zebin, WEI Zhihui, et al. Spatial correlation constrained sparse representation for hyperspectral image classification[J]. Journal of Electronics Information Technology, 2012, 34(11): 2666-2671. doi: 10.3724/SP.J.1146. 2012.00577. ZHANG Hongyan, LI Jiayi, HUANG Yuancheng, et al. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2057-2066. doi: 10.1109/JSTARS.2013. 2264720. WAKIN N M, DUARTE M, SARVOTHAM S, et al. Recovery of jointly sparse signals from few random projections[C]. Processing Workshop on Neural Information Processing System, Vancouver, 2005: 1435-1442. YUAN Xiaotong, LIU Xiaobai, and YAN Shuicheng. Visual classification with multi-task joint sparse representation[J]. IEEE Transactions on Image Processing, 2012, 21(10): 4349-4360. doi: 10.1109/TIP.2012.2205006. LI Jiayi, ZHANG Hongyan, and ZHANG Liangpei. Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5923-5936. doi: 10.1109/TGRS.2015.2421638. 耿修瑞. 高光譜遙感圖像信息提取的若干數(shù)學(xué)原理[R]. 北京師范大學(xué)博士后研究工作報(bào)告, 北京, 2007. GENG Xiurui. Several mathmatical principles on information extraction for hyperspectral imagery[R]. Research Report for Post-Ph.D. in Beijing Normal University, Beijing, 2007. IORDACHE M D, BIOUCAS J M, and PLAZA A. Dictionary pruning in sparse unmixing of hyperspectral data[C]. 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Shanghai, 2012: 1-4. doi: 10.1109/WHISPERS.2012.6874329. CLARK R, SWAYZE G, LIVO K, et al. Imaging spectroscopy: Earth and planetary remote sensing with the USGS tetracorder and expert systems[J]. Journal of Geophysical Research, 2003, 108(E12): 5131. doi: 10.1029/ 2002JE001847. 普晗曄, 王斌, 夏威. 約束最小二乘的高光譜圖像非線性解混[J]. 紅外與毫米波學(xué)報(bào), 2014, 33(5): 552-559. doi: 10.3724/SP.J. 1010.2014.00552. PU Hanye, WANG Bin, and XIA Wei. Nonlinear unmixing of hyperspectral imagery based on constrained least squares[J]. Journal of Infrared and Millimeter Waves, 2014, 33(5): 552-559. doi: 10.3724/SP.J.1010.2014.00552. -
計(jì)量
- 文章訪問(wèn)數(shù): 2139
- HTML全文瀏覽量: 160
- PDF下載量: 1095
- 被引次數(shù): 0