一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于光譜相似度量的高光譜圖像多任務(wù)聯(lián)合稀疏光譜解混方法

許寧 尤紅建 耿修瑞 曹銀貴

許寧, 尤紅建, 耿修瑞, 曹銀貴. 基于光譜相似度量的高光譜圖像多任務(wù)聯(lián)合稀疏光譜解混方法[J]. 電子與信息學(xué)報(bào), 2016, 38(11): 2701-2708. doi: 10.11999/JEIT160011
引用本文: 許寧, 尤紅建, 耿修瑞, 曹銀貴. 基于光譜相似度量的高光譜圖像多任務(wù)聯(lián)合稀疏光譜解混方法[J]. 電子與信息學(xué)報(bào), 2016, 38(11): 2701-2708. doi: 10.11999/JEIT160011
XU Ning, YOU Hongjian, GENG Xiurui, CAO Yingui. Multi-task Jointly Sparse Spectral Unmixing Method Based on Spectral Similarity Measure of Hyperspectral Imagery[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2701-2708. doi: 10.11999/JEIT160011
Citation: XU Ning, YOU Hongjian, GENG Xiurui, CAO Yingui. Multi-task Jointly Sparse Spectral Unmixing Method Based on Spectral Similarity Measure of Hyperspectral Imagery[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2701-2708. doi: 10.11999/JEIT160011

基于光譜相似度量的高光譜圖像多任務(wù)聯(lián)合稀疏光譜解混方法

doi: 10.11999/JEIT160011
基金項(xiàng)目: 

中國(guó)地質(zhì)調(diào)查局地質(zhì)調(diào)查項(xiàng)目(1212011120226),國(guó)家863計(jì)劃(2012AA12A308),中國(guó)科學(xué)院科技服務(wù)網(wǎng)絡(luò)計(jì)劃項(xiàng)目(KFJ- EW-STS-046)

Multi-task Jointly Sparse Spectral Unmixing Method Based on Spectral Similarity Measure of Hyperspectral Imagery

Funds: 

The Geological Survey Program of China Geological Survey (1212011120226), The National 863 Program of China (2012AA12A308), The Science and Technology Services Network Program of Chinese Academy of Sciences (KFJ-EW- STS-046)

  • 摘要: 基于圖像中存在的鄰域以及非局部相似等圖像空間特征和聯(lián)合稀疏解混思想,該文提出一種基于高光譜圖像光譜相似性度量的多任務(wù)聯(lián)合稀疏解混方法。通過(guò)高光譜圖像的光譜特性統(tǒng)計(jì)值設(shè)定光譜度量閾值,對(duì)高光譜圖像中相似的像元光譜進(jìn)行光譜相似性度量分組,再對(duì)分組像元光譜數(shù)據(jù)進(jìn)行多任務(wù)聯(lián)合稀疏光譜解混模型的構(gòu)建和求解,得到最終的豐度系數(shù)。模擬數(shù)據(jù)實(shí)驗(yàn)結(jié)果表明,該方法一定程度上提升了現(xiàn)有聯(lián)合稀疏光譜解混方法的豐度估計(jì)精度,真實(shí)數(shù)據(jù)結(jié)果也驗(yàn)證了方法的有效性。
  • KESHAVE N and MUSTARD J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002, 19(1): 44-57. doi: 10.1109/79.974727.
    童慶禧, 張兵, 鄭蘭芬. 高光譜遙感原理、技術(shù)與應(yīng)用[M]. 北京: 高等教育出版社, 2006: 246-248.
    TONG Qingxi, ZHANG Bing, and ZHENG Lanfen. Hypersepctral Remote SensinuPrinciples, Techniques and Applications[M]. Beijing: Higher Education Press, 2006: 246-248.
    浦瑞良, 宮鵬. 高光譜遙感及其應(yīng)用[M]. 北京: 高等教育出版社, 2000: 1-5.
    PU Ruiliang and GONG Peng. Hyperspectral Remote Sening and Its Application[M]. Beijing: Higher Education Press, 2000: 1-5.
    HEINZ D C and CHANG C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3): 529-545. doi: 10.1109/36.911111.
    耿修瑞, 張兵, 張霞, 等. 一種基于高維空間凸面單形體體積的高光譜圖像解混算法[J]. 自然科學(xué)進(jìn)展, 2004, 14(7): 810-814.
    GENG Xiurui, ZHANG Bing, ZHANG Xia, et al. An unmixing method of hyperspectral imagery based on convex volume in high dimensional space[J]. Progress in Natureal Science, 2004, 14(7): 810-814
    HONEINE P and RICHARD C. Geometric unmixing of large hyperspectral images: A barycentric coordinate approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6): 2185-2195. doi: 10.1109/TGRS.2011.2170999.
    YUAN Yuan, FU Min, and LU Xiaoqing. Substance dependence constrained sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 2975-2986. doi: 10.1109/TGRS.2014. 2365953.
    NASCIMENTO J M P and BIOUCAS-DIAS J M. Does independent component analysis play a role in unmixing hyperspectral data?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(1): 175-187. doi: 10.1109/ TGRS.2004.839806.
    SHI Chen and WANG Le. Incorporating spatial information in spectral unmixing: A review[J]. Remote Sensing of Environment, 2014, 149: 70-87. doi: 10.1016/j.rse.2014.03. 034.
    BIOUCAS-DIAS J M. A variable splitting augmented Lagragian approach to linear spectral unmixing[C]. First Workshop on Hyperspectral Image Signal Processing: Evolution in Remote Sensing, Grenoble, 2009: 1-4. doi: 10.1109/WHISPERS.2009. 5289072.
    IORDACHE M D, BIOUCAS-DIAS J M, and PLAZA A. Total variation spatial regularization for sparse hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4484-4502. doi: 10.1109/TGRS.2012. 2191590.
    ZHONG Yanfei, FENG Ruyi, and ZHANG Liangpei. Non-local sparse unmixing for hyperspectral remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 1889-1909. doi: 10.1109/JSTARS.2013.2280063.
    CHEN Fen and ZHANG Yan. Sparse hyperspectral unmixing based on constrained lp-l2 optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1142-1146. doi: 10.1109/LGRS.2012.2232901.
    IORDACHE M D, BIOUCAS-DIAS J M, and PLAZA A. Collaborative sparse regression for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 341354. doi: 10.1109/TGRS.2013.2240001.
    BIENIARZ J, AGUILERA E, ZHU X X, et al. Joint sparsity model for multilook hyperspectral image unmixing[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 696-700. doi: 10.1109/LGRS.2014.2358623.
    王蕊, 李恒超, 尹忠科. 考慮端元差異性的協(xié)同稀疏高光譜解混算法[J]. 電子科技大學(xué)學(xué)報(bào), 2014, 43(6): 813-817. doi: 10. 3969/j.issn.1001-0548.2014.06.003.
    WANG Rui, LI Hengchao, and YIN Zhongke. Collaborative sparse unmixing of hyperspectral data considering the difference of endmembers[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(6): 813-817. doi: 10.3969/j.issn.1001-0548.2014.06.003.
    KIM S J, KOH K, LUSTIG M, et al. An interior-point method for large-scale l1-regularized least squares[J]. IEEE Journal of Selected Topics in Signal Processig, 2007, 1(4): 606-617. doi: 10.1109/JSTSP.2007.910971.
    劉建軍, 吳澤彬, 韋志輝, 等. 基于空間相關(guān)性約束稀疏表示的高光譜圖像分類[J]. 電子與信息學(xué)報(bào), 2012, 34(11): 2666-2671. doi: 10.3724/SP.J.1146.2012.00577.
    LIU Jianjun, WU Zebin, WEI Zhihui, et al. Spatial correlation constrained sparse representation for hyperspectral image classification[J]. Journal of Electronics Information Technology, 2012, 34(11): 2666-2671. doi: 10.3724/SP.J.1146. 2012.00577.
    ZHANG Hongyan, LI Jiayi, HUANG Yuancheng, et al. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2057-2066. doi: 10.1109/JSTARS.2013. 2264720.
    WAKIN N M, DUARTE M, SARVOTHAM S, et al. Recovery of jointly sparse signals from few random projections[C]. Processing Workshop on Neural Information Processing System, Vancouver, 2005: 1435-1442.
    YUAN Xiaotong, LIU Xiaobai, and YAN Shuicheng. Visual classification with multi-task joint sparse representation[J]. IEEE Transactions on Image Processing, 2012, 21(10): 4349-4360. doi: 10.1109/TIP.2012.2205006.
    LI Jiayi, ZHANG Hongyan, and ZHANG Liangpei. Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5923-5936. doi: 10.1109/TGRS.2015.2421638.
    耿修瑞. 高光譜遙感圖像信息提取的若干數(shù)學(xué)原理[R]. 北京師范大學(xué)博士后研究工作報(bào)告, 北京, 2007.
    GENG Xiurui. Several mathmatical principles on information extraction for hyperspectral imagery[R]. Research Report for Post-Ph.D. in Beijing Normal University, Beijing, 2007.
    IORDACHE M D, BIOUCAS J M, and PLAZA A. Dictionary pruning in sparse unmixing of hyperspectral data[C]. 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Shanghai, 2012: 1-4. doi: 10.1109/WHISPERS.2012.6874329.
    CLARK R, SWAYZE G, LIVO K, et al. Imaging spectroscopy: Earth and planetary remote sensing with the USGS tetracorder and expert systems[J]. Journal of Geophysical Research, 2003, 108(E12): 5131. doi: 10.1029/ 2002JE001847.
    普晗曄, 王斌, 夏威. 約束最小二乘的高光譜圖像非線性解混[J]. 紅外與毫米波學(xué)報(bào), 2014, 33(5): 552-559. doi: 10.3724/SP.J. 1010.2014.00552.
    PU Hanye, WANG Bin, and XIA Wei. Nonlinear unmixing of hyperspectral imagery based on constrained least squares[J]. Journal of Infrared and Millimeter Waves, 2014, 33(5): 552-559. doi: 10.3724/SP.J.1010.2014.00552.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  2139
  • HTML全文瀏覽量:  160
  • PDF下載量:  1095
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-01-04
  • 修回日期:  2016-06-06
  • 刊出日期:  2016-11-19

目錄

    /

    返回文章
    返回