一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

一種基于低秩表示的子空間聚類改進(jìn)算法

張濤 唐振民 呂建勇

張濤, 唐振民, 呂建勇. 一種基于低秩表示的子空間聚類改進(jìn)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(11): 2811-2818. doi: 10.11999/JEIT160009
引用本文: 張濤, 唐振民, 呂建勇. 一種基于低秩表示的子空間聚類改進(jìn)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(11): 2811-2818. doi: 10.11999/JEIT160009
ZHANG Tao, TANG Zhenmin, Lü Jianyong. Improved Algorithm Based on Low Rank Representation for Subspace Clustering[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2811-2818. doi: 10.11999/JEIT160009
Citation: ZHANG Tao, TANG Zhenmin, Lü Jianyong. Improved Algorithm Based on Low Rank Representation for Subspace Clustering[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2811-2818. doi: 10.11999/JEIT160009

一種基于低秩表示的子空間聚類改進(jìn)算法

doi: 10.11999/JEIT160009
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61473154)

Improved Algorithm Based on Low Rank Representation for Subspace Clustering

Funds: 

The National Natural Science Foundation of China (61473154)

  • 摘要: 該文針對(duì)現(xiàn)有的基于低秩表示的子空間聚類算法使用核范數(shù)來代替秩函數(shù),不能有效地估計(jì)矩陣的秩和對(duì)高斯噪聲敏感的缺陷,提出一種改進(jìn)的算法,旨在提高算法準(zhǔn)確率的同時(shí),保持其在高斯噪聲下的穩(wěn)定性。在構(gòu)建目標(biāo)函數(shù)時(shí),使用系數(shù)矩陣的核范數(shù)和Forbenius范數(shù)作為正則項(xiàng),對(duì)系數(shù)矩陣的奇異值進(jìn)行強(qiáng)凸的正則化后,采用非精確的增廣拉格朗日乘子方法求解,最后對(duì)求得的系數(shù)矩陣進(jìn)行后處理得到親和矩陣,并采用經(jīng)典的譜聚類方法進(jìn)行聚類。在人工數(shù)據(jù)集、Extended Yale B數(shù)據(jù)庫和PIE數(shù)據(jù)庫上同流行的子空間聚類算法的實(shí)驗(yàn)對(duì)比證明了所提改進(jìn)算法的有效性和對(duì)高斯噪聲的魯棒性。
  • 王衛(wèi)衛(wèi), 李小平, 馮象初, 等. 稀疏子空間聚類綜述[J]. 自動(dòng)化學(xué)報(bào), 2015, 41(8): 1373-1384. doi: 10.16383/j.aas.2015. c140891.
    WANG Weiwei, LI Xiaoping, FENG Xiangchu, et al. A survey on sparse subspace clustering[J]. Acta Automatica Sinica, 2015, 41(8): 1373-1384. doi: 10.16383/j.aas.2015.c140891.
    VIDAL R. Subspace clustering[J]. IEEE Signal Processing, 2011, 28(2): 52-68. doi: 10.1109/MSP.2010.939739.
    ELHAMIFAR E and VIDAL R. Sparse subspace clustering: Algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 34(11): 2765-2781. doi: 10.1109/TPAMI.2013.57.
    VIDAL R and FAVARO P. Low rank subspace clustering (LRSC)[J]. Pattern Recognition Letters, 2014, 43: 47-61. doi: 10.1016/j.patrec.2013.08.006.
    LIU G C, LIN Z C, and YU Y. Robust subspace segmentation by low-rank representation[C]. Proceedings of the International Conference on Machine Learning, Haifa, Israel, 2010: 663-670.
    LIU G C, LIN Z C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. doi: 10.1109/TPAMI.2012.88.
    FENG J S, LIN Z C, XU H, et al. Robust subspace segmentation with block-diagonal prior[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 3818-3825. doi: 10.1109/CVPR.2014.482.
    ZHANG X, SUN F, LIU G C, et al. Fast low-rank subspace segmentation[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1293-1297. doi: 10.1109/TKDE. 2013.114.
    PATEL V M, NGUYEN H V, and VIDAL R. Latent space sparse and low-rank subspace clustering[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(4): 691-701. doi: 10.1109/JSTSP.2015.2402643.
    LIU J M, CHEN Y J, ZHANG J S, et al. Enhancing low-rank subspace clustering by manifold regularization[J]. IEEE Transactions on Image Processing, 2014, 23(9): 4022-4030. doi: 10.1109/TIP.2014.2343458.
    YIN M, GAO J B, LIN Z C, et al. Dual graph regularized latent low-rank representation for subspace clustering[J]. IEEE Transactions on Image Processing, 2015, 24(12): 4918-4933. doi: 10.1109/TIP.2015.2472277.
    MOL C D, VITO E D, and ROSASCO L. Elastic-net regularization in learning theory[J]. Journal of Complexity, 2009, 25(2): 201-230. doi: 10.1016/j.jco.2009. 01.002.
    LIN Z C, CHEN M M, and MA Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[R]. UIUC Technical Report UILU-ENG-09-2215, 2009.
    NG A Y, JORDAN M, and WEISS Y. On spectral clustering: Analysis and an algorithm[C]. Proceedings of the Advances in Neural Information Processing Systems, Vancouver, Canada, 2001: 849-856.
    LI H, CHEN N, and LI L Q. Error analysis for matrix elastic-net regularization algorithms[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(5): 737-748. doi: 10.1109/TNNLS.2012.2188906.
    CAI J F, CANDES E J, and SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Control and Optimization, 2010, 20(4): 1956-1982. doi: 10.1137/080738970.
    SHI J B and MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. doi: 10.1109/ 34.868688.
    BERTSEKAS D. Constrained Optimization and Lagrange Multiplier Methods[M]. Belmont, MA, USA: Athena Scientific, 1996: 326-340.
    CANDES E J, LI X D, MA Y, et al. Robust principal component analysis[J]. Journal of the ACM, 2010, 58(1): 1-37. doi: 10.1145/1970392.1970395.
    YAN J Y and POLLEFEYS M. A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate[C]. Proceedings of the European Conference on Computer Vision, Graz, Austria, 2006: 94-106. doi: 10.1007/11744085_8.
    CHEN J L and LERMAN G. Spectral curvature clustering (SCC)[J]. International Journal of Computer Vision, 2009, 81(3): 317-330. doi: 10.1007/s11263-008-0178-9.
    LU C Y, MIN H, ZHAO Z Q, et al. Robust and efficient subspace segmentation via least squares regression[C]. Proceedings of the European Conference on Computer Vision, Florence, Italy, 2012: 347-360. doi: 10.1007/978-3-642- 33786-4_26.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1476
  • HTML全文瀏覽量:  126
  • PDF下載量:  689
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-01-04
  • 修回日期:  2016-05-12
  • 刊出日期:  2016-11-19

目錄

    /

    返回文章
    返回