基于哈希方法的物理層認(rèn)證機制
doi: 10.11999/JEIT160007
基金項目:
國家863計劃項目(2015AA01A708),國家自然科學(xué)基金(61379006),國家青年科學(xué)基金(61501516)
Physical Layer Authentication Scheme Based on Hash Method
Funds:
The National 863 Program of China (2015AA01A708), The National Natural Science Foundation of China (61379006), The National Science Fund for Excellent Young Scholars (61501516)
-
摘要: 現(xiàn)有物理層挑戰(zhàn)-響應(yīng)認(rèn)證機制使用無線信道信息掩藏密鑰生成認(rèn)證響應(yīng),一旦攻擊方獲得合法信道信息,則可直接破解密鑰。針對上述問題,該文借鑒曲線匹配原理,提出一種基于哈希方法的物理層認(rèn)證機制。首先,認(rèn)證雙方提取無線信道特征,并和認(rèn)證密鑰組合得到初始認(rèn)證向量,該向量被等效為一條曲線;隨后,采用具有容錯性的單向哈希函數(shù)將該曲線映射為低維的哈希矢量,用作認(rèn)證響應(yīng);最后,認(rèn)證方根據(jù)需求設(shè)置認(rèn)證門限,并根據(jù)響應(yīng)的匹配結(jié)果進行判決。性能分析表明,所采用的哈希方法實質(zhì)為欠定方程組,攻擊方無法根據(jù)低維哈希矢量還原曲線信息,從而無法破解密鑰;仿真結(jié)果表明,在攻擊方竊取了合法信道信息的條件下,在4 dB時,現(xiàn)有挑戰(zhàn)-響應(yīng)機制攻擊率約為0.5,該文所提機制可實現(xiàn)攻擊率小于10-5 。Abstract: To solve the problem of key leakages in existing physical layer challenge-response authentication schemes, a physical layer authentication scheme based on hash method is proposed. The channel characteristics are extracted and linked with the key which can be regarded as a curve. Then a fault-tolerant hash function is employed to map the curve into a response with lower dimension. The authenticator lastly sets the threshold according to the authentication requirement and further to verify the identity of the requester. The hash function is an underdetermined system and attackers can not recover the curve according to the response. Simulation results prove the effectiveness of the scheme whose attack rate is less than10-5 while attack rates for existing schemes are almost 0.5 under the SNR of 4 dB.
-
Key words:
- Physical-layer /
- Authentication /
- Curve matching /
- Hash method
-
JIN Cao, MA Maode, LI Hui, et al. A survey on security aspects for LTE and LTE-A networks[J]. IEEE Communications Surveys Tutorials, 2014, 16(1): 283-302. doi: 10.1109/SURV.2013.041513.00174. PATWARI N and KASERA S K. Temporal link signature measurements for location distinction[J]. IEEE Transactions on Mobile Computing, 2011, 10(3): 449-462. doi: 10.1109/ TMC.2010.189. JORSWIECK E, TOMASIN S, and SEZGIN A. Broadcasting into the uncertainty: authentication and confidentiality by physical-layer processing[J]. Proceedings of the IEEE, 2015, 103(10): 1702-1724. doi: 10.1109/JPROC. 2015.2469602. ZENG K, GOVINDAN K, and MOHAPATRA P. Non-cryptographic authentication and identification in wireless networks[J]. IEEE Wireless Communications, 2010, 17(5): 56-62. doi: 10.1109/MWC.2010.5601959. DEMIRBAS M and SONG Y. An RSSI-based scheme for Sybil attack detection in wireless sensor networks[C]. Proceedings of the 2006 International Symposium on World of Wireless, Mobile and Multimedia Networks, New York, 2006: 564-570. doi: 10.1109/WOWMOM.2006.27. XIAO Liang, GREENSTEIN L J, MANDAYAM N B, et al. Using the physical layer for wireless authentication in time- variant channels[J]. IEEE Transactions on Wireless Communications, 2008, 7(7): 2571-2579. doi: 10.1109/TWC. 2008.070194. LIU Jiazi and WANG Xianbin. Physical layer authentication enhancement using two-dimensional channel quantization[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 4171-4182. doi: 10.1109/TWC.2016.2535442. SHAN Dan, ZENG Kai, XIANG Weidong, et al. PHY-CRAM: physical layer challenge-response authentication mechanism for wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1817-1827. doi: 10.1109/JSAC. 2013.130914. 張繼明. 無線網(wǎng)絡(luò)中物理層身份認(rèn)證研究[D]. [碩士論文]. 華中科技大學(xué), 2013. ZHANG Jiming. Research on physical-layer identity authentication in wireless networks[D]. [Master dissertation], Huazhong University of Science and Technology, 2013. DU Xianru, SHAN Dan, ZENG Kai, et al. Physical layer challenge-response authentication in wireless networks with relay[C]. IEEE International Conference on Computer Communications, Orlando, 2014: 1276-1284. doi: 10.1109/ INFOCOM. 2014.6848060. WU Xiaofu and ZHEN Yan. Physical-layer authentication for multi-carrier transmission[J]. IEEE Communications Letters, 2015, 19(1): 74-77. doi: 10.1109/LCOMM.2014.2375191. JAKES W C and COX D C. Microwave Mobile Communications[M]. New Jersey, Wiley-IEEE Press, 1994: 13-39. TRAPPE W. The challenges facing physical layer security[J]. IEEE Communications Magazine, 2015, 53(6): 16-20. doi: 10.1109/MCOM.2015.7120011 呂科, 耿國華, 周明全. 基于哈希方法的空間曲線匹配[J]. 電子學(xué)報, 2003, 31(2): 294-296. doi: 10.3321/j.issn:0372-2112. 2003.02.037. L Ke, GENG Guohua, and ZHOU Mingquan. Matching of 3D curve based on the hash method[J]. Acta Electronica Sinica, 2003, 31(2): 294-296. doi: 10.3321/j.issn:0372-2112. 2003.02. 037. PATZOLD M. Mobile Radio Channels[M]. New York, John Wiley Sons, 2012: 55-147. SWAMINATHAN A, MAO Yinian, and WU Min. Robust and secure image hashing[J]. IEEE Transactions on Information Forensics and Security, 2006, 1(2): 215-230. doi: 10.1109/TIFS.2006.873601. GOERGEN N, CLANCY T C, and NEWMAN T R. Physical layer authentication watermarks through synthetic channel emulation[C]. 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum, Singapore, 2010: 1-7. doi: 10.1109/ DYSPAN.2010.5457897. GOERGEN N, LIN W S, LIU K J, et al. Authenticating MIMO transmissions using channel-like fingerprinting[C]. Global Telecommunications Conference, Miami, 2010: 1-6. doi: 10.1109/GLOCOM.2010.5684218. FONTAN F P and ESPIEIRA P M. Modeling the Wireless Propagation Channel: A Simulation Approach with Matlab[M]. New Jersey, John Wiley Sons, 2008: 105-111. -
計量
- 文章訪問數(shù): 1590
- HTML全文瀏覽量: 147
- PDF下載量: 459
- 被引次數(shù): 0