一種交疊的Shuffled-BP LDPC譯碼算法
doi: 10.11999/JEIT151477
-
2.
(中國(guó)科學(xué)院國(guó)家空間科學(xué)中心 北京 100190) ②(中國(guó)科學(xué)院大學(xué) 北京 100190)
基金項(xiàng)目:
中國(guó)科學(xué)院創(chuàng)新基金(CXJJ14S126)
An Overlapped Shuffled-BP LDPC Decoding Algorithm
-
2.
FAN Yanan①② WANG Lichong①② YAO Xiujuan① MENG Xin
Funds:
CAS Innovation Foundation (CXJJ14S126)
-
摘要: Shuffled-BP(SBP)譯碼算法是一種基于變量節(jié)點(diǎn)的串行消息傳遞譯碼算法,其收斂速度快于原有的置信度傳播譯碼算法,然而由于實(shí)際工程實(shí)現(xiàn)中的半并行化處理,其收斂速度和誤碼性能均有所降低。為了進(jìn)一步提高SBP算法的性能,該文提出一種交疊的Shuffled-BP(Overlapped Shuffled-BP, OSBP)譯碼算法。該算法采用若干個(gè)相同的子譯碼器以不同的更新順序同時(shí)進(jìn)行更新,對(duì)于每個(gè)變量節(jié)點(diǎn),在每次迭代更新后選取最可靠的信息參與下一次迭代,以此提高迭代的收斂速度。理論分析和仿真實(shí)驗(yàn)均表明,在不增加額外存儲(chǔ)空間的條件下,OSBP算法相比于SBP算法有著更優(yōu)的誤碼性能以及更快的收斂速度。此外,提出的OSBP算法對(duì)于規(guī)則和不規(guī)則LDPC碼均有效。
-
關(guān)鍵詞:
- LDPC碼 /
- 收斂速度 /
- 譯碼算法 /
- Shuffled-BP /
- 交疊的Shuffled-BP
Abstract: Shuffled-BP (SBP) decoding algorithm is a variable-node-based serial decoding algorithm, which converges faster than the original Belief-Propagation (BP) decoding algorithm. However, due to the semi-parallel processing, there is a decrease in terms of convergence speed and error performance. An Overlapped Shuffled-BP(OSBP) decoding algorithm is proposed to enhance further the performance of the Shuffled-BP algorithm. In this algorithm, more than one sub-decoders are used to execute simultaneously, every sub-decoder has different updating order from each other. Regarding each variable node, the most reliable messages are kept and used for the next iteration, thus a faster convergence can be provided. Both theoretical analysis and simulation results show that, compared with SBP algorithm, OSBP algorithm possesses a better error performance as well as a higher convergence speed and introduces no extra storage requirement. Moreover, the proposed algorithm is effective for both regular and irregular LDPC codes. -
SHANNON C E. A mathematical theory of communi- cation[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3-55. MACKAY D J C and NEAL R M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996, 32(18): 1645-1646. GALLAGER R G. Low-density parity-check codes[J]. IRE Transactions on Information Theory, 1962, 8(1): 21-28. HOCEVAR, D. A reduced complexity decoder architecture via layered decoding of LDPC codes[C]. IEEE Workshop on Signal Processing Systems (SIPS), Austin, TX, USA, 2004: 107-112. ZHANG Xinmiao and TAI Ying. High-speed multi-block-row layered decoding for Quasi-cyclic LDPC codes[C]. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, GA, USA, 2014: 11-14. ZHANG J and FOSSORIER M. Shuffled belief propagation decoding[C]. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2002, 1: 8-15. WU Sheng, JIANG Xiaobo, and NIE Zhenghua. Alternate iteration of shuffled belief propagation decoding[C]. International Conference on Communications and Mobile Computing (CMC), Shenzhen, China, 2010, 2: 278-281. LAOUINI N, BEN Hadj Slama L, and BOUALLEGUE A. An optimized min-sum variable node layering for LDPC decoding[C]. International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 2014: 794-799. SUN Yang and CAVALLARO J R. VLSI architecture for layered decoding of QC-LDPC codes with high circulant weight[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21(10): 1960-1964. ASLAM C A, GUAN Yongliang, and CAI Kui. Improving the belief-propagation convergence of irregular LDPC codes using column-weight based scheduling[J]. IEEE Communi- cations Letters, 2015, 19(8): 1283-1286. LIU Xingcheng, ZHANG Yuanbin, and RU Cui. Variable-node-based dynamic scheduling strategy for belief-propagation decoding of LDPC codes[J]. IEEE Communications Letters, 2015, 19(2): 147-150. LI Jia, YANG Gaigai, and ZHAO Zhiqiang. An improved-performance decoding algorithm of LDPC codes for layered decoding[C]. IEEE International Conference on Communication Problem-Solving (ICCP), Beijing, China, 2014: 318-321. HAGENAUER J, OFFER E, and PAPKE L. Iterative decoding of binary block and convolutional codes[J]. IEEE Transactions on Information Theory, 1996, 42(2): 429-445. CHUNG Saeyoung, RICHARDSON T J, and URBANKE R L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Transactions on Information Theory, 2001, 47(2): 657-670. RICHARDSON T J, SHOKROLLAHI M A, and URBANKE R L. Design of capacity-approaching irregular low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2001, 47(2): 619-637. ZHANG Yi and DA Xinyu. Construction of girth-eight QC-LDPC codes from arithmetic progression sequence with large column weight[J]. Electronics Letters, 2015, 51(16): 1257-1259. JIANG Xueqin, XIA Xianggen, and LEE Moonho. Efficient progressive edge-growth algorithm based on Chinese remainder rheorem[J]. IEEE Transactions on Communi- cations, 2014, 62(2): 442-451. -
計(jì)量
- 文章訪問(wèn)數(shù): 1482
- HTML全文瀏覽量: 118
- PDF下載量: 434
- 被引次數(shù): 0