ZigBee網(wǎng)絡(luò)抵御Sybil攻擊的自適應(yīng)鏈路指紋認(rèn)證方案
doi: 10.11999/JEIT151476
-
1.
(解放軍信息工程大學(xué) 鄭州 450004) ②(信息保障技術(shù)重點(diǎn)實(shí)驗(yàn)室 北京 100072)
信息保障技術(shù)重點(diǎn)實(shí)驗(yàn)室開放基金(KJ-15-104)
Adaptive Link Fingerprint Authentication Scheme Against Sybil Attack in ZigBee Network
-
1.
(PLA Information Engineering University, Zhengzhou 450004, China)
-
2.
(Key Laboratory of Information Assurance Technology, Beijing 100072, China)
Key Laboratory of Information Assurance Technology Open Fund (KJ-15-104)
-
摘要: 該文針對(duì)ZigBee網(wǎng)絡(luò)中Sybil攻擊破壞節(jié)點(diǎn)身份唯一性的問題,提出一種抵御Sybil攻擊的自適應(yīng)鏈路指紋認(rèn)證方案。方案首先基于無線鏈路特征設(shè)計(jì)了鏈路指紋,在此基礎(chǔ)上,提出了反映信道質(zhì)量的相干時(shí)間估測算法和適應(yīng)子節(jié)點(diǎn)數(shù)量變化的保護(hù)時(shí)隙(GTS)動(dòng)態(tài)申請(qǐng)算法,并給出了Sybil攻擊認(rèn)證流程。安全性分析及實(shí)驗(yàn)結(jié)果表明,方案在通信環(huán)境的安全邊界條件下節(jié)點(diǎn)認(rèn)證成功率可達(dá)97%以上,且鏈路指紋無需存儲(chǔ),具有較低的資源需求。
-
關(guān)鍵詞:
- 無線網(wǎng)絡(luò)安全 /
- ZigBee /
- Sybil攻擊 /
- 鏈路指紋 /
- 保護(hù)時(shí)隙
Abstract: To solve the problem that Sybil attack damages the uniqueness of node identity in ZigBee network, an adaptive link fingerprint authentication scheme against Sybil attack is proposed. First, a link fingerprint based on the characteristics of wireless link is designed. Based on this fingerprint, two algorithms are presented. One is the estimation algorithm of coherence time reflecting channels quality and the other is the dynamic application algorithm of Guaranteed Time Slot (GTS) adapting to changes in child nodes number. At the same time, the authenticating procedure for Sybil attack is presented. Security analysis and experiment results show that the node authentication rate of the proposed scheme can reach more than 97% under the condition of security boundary in communication environment. Due to the usage of link fingerprint, the scheme has lower resource requirements.-
Key words:
- Wireless network security /
- ZigBee /
- Sybil attack /
- Link fingerprint /
- Guaranteed Time Slot (GTS)
-
YEE H C and RAHAYU Y. Monitoring parking space availability via ZigBee technology[J]. International Journal of Future Computer and Communication, 2014, 3(6): 377-380. doi: 10.7763/IJFCC.2014.V3.331. TSENG H W, LEE Y H, YEN L Y, et al. ZigBee (2.4 G) wireless sensor network application on indoor intrusion detection[C]. 2015 IEEE International Conference on Consumer Electronics, Taipei, China, 2015: 434-435. DOUCEUR J R. The Sybil attack[C]. 1st International Workshop on Peer-to-Peer Systems, Cambridge, MA, USA, 2002: 251-260. THAKUR P, PATEL R, and PATEL N. A proposed framework for protection of identity based attack in ZigBee[C]. 2015 Fifth International Conference on Communication Systems and Network Technologies, Gwalior, India, 2015: 628-632. doi: 10.1109/CSNT.2015.243. ZHANG Q, WANG P, REEVES D S, et al. Defending against Sybil attacks in sensor networks[C]. 25th IEEE International Conference on Distributed Computing Systems Workshops, Columbus, Ohio, USA, 2005: 185-191. doi: 10.1109/ ICDCSW.2005.57. NEWSOME J, SHI E, SONG D, et al. The Sybil attack in sensor networks: analysis defenses[C]. Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, Berkeley, California, USA, 2004: 259-268. DI PIETRO R, GUARINO S, VERDE N V, et al. Security in wireless ad-hoc networksA survey[J]. Computer Communications, 2014, 51: 1-20. ZENG K, GOVINDAN K, and MOHAPATRA P. Non-cryptographic authentication and identification in wireless networks[J]. IEEE Wireless Communications, 2010, 17(5): 56-62. PATWARI N and KASERA S K. Robust location distinction using temporal link signatures[C]. Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking, Montral, Qubec, Canada, 2007: 111-122. doi: 10.1145/1287853.1287867. LIU Y and NING P. Enhanced wireless channel authentication using time-synched link signature[C]. INFOCOM 2012 Proceedings IEEE, Orlando, FL, USA, 2012: 2636-2640. XIAO L, GREENSTEIN L J, MANDAYAM N B, et al. Channel-based detection of Sybil attacks in wireless networks[J]. IEEE Transactions on Information Forensics and Security, 2009, 4(3): 492-503. doi: 10.1109/TIFS.2009. 2026454. JAKES W C and COX D C. Microwave Mobile Communications[M]. Hoboken, NJ, USA, Wiley-IEEE Press, 1994: 1-69. HE F, MAN H, KIVANC D, et al. EPSON: enhanced physical security in OFDM networks[C]. IEEE International Conference on Communications, Dresden, Germany, 2009: 1-5. doi: 10.1109/ICC.2009.5198999. 華蘇重, 葛麗嘉. 相對(duì)時(shí)延在碼片內(nèi)的多徑分離[J]. 通信學(xué)報(bào), 2001, 22(2): 42-48. HUA Suchong and GE Lijia. Separation of sub-chip multipath components[J]. Journal on Communications, 2001, 22(2): 42-48. 羅炬鋒, 邱云周, 付耀先, 等. 研究片內(nèi)多徑分離技術(shù)在基于RSSI定位中的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2011, 33(4): 891-895. doi: 10.3724/SP.J.1146.2010.00780. LUO Jufeng, QI Yunzhou, FU Yaoxian, et al. Research on separation of subchip multipath components for RSSI-based location application[J]. Journal of Electronics Information Technology, 2011, 33(4): 891-895. doi: 10.3724/SP.J.1146. 2010.00780. AKHLAQ M and SHELTAMI T R. Rtsp: an accurate and energy-efficient protocol for clock synchronization in wsns[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(3): 578-589. 郁濱, 周偉偉. ZigBee同頻攻擊檢測抑制模型研究[J]. 電子與信息學(xué)報(bào), 2015, 37(9): 2211-2217. doi: 10.11999/JEIT141395. YU Bin and ZHOU Weiwei. Co-channel attack detection and suppression model for ZigBee network nodes[J]. Journal of Electronics Information Technology, 2015, 37(9): 2211-2217. doi: 10.11999/JEIT141395. 羅海軍, 彭衛(wèi)東. 整體最小二乘法在精同步中的應(yīng)用[J]. 計(jì)算機(jī)測量與控制, 2014, 22(7): 2291-2294. LUO Haijun and PENG Weidong. Application of total least squares in precise synchronization[J]. Computer Measurement Control, 2014, 22(7): 2291-2294. -
計(jì)量
- 文章訪問數(shù): 1551
- HTML全文瀏覽量: 122
- PDF下載量: 358
- 被引次數(shù): 0