一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

聯(lián)合圖形約束和穩(wěn)健主成分分析的地面動(dòng)目標(biāo)檢測算法

郭小路 陶海紅 楊東

郭小路, 陶海紅, 楊東. 聯(lián)合圖形約束和穩(wěn)健主成分分析的地面動(dòng)目標(biāo)檢測算法[J]. 電子與信息學(xué)報(bào), 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462
引用本文: 郭小路, 陶海紅, 楊東. 聯(lián)合圖形約束和穩(wěn)健主成分分析的地面動(dòng)目標(biāo)檢測算法[J]. 電子與信息學(xué)報(bào), 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462
GUO Xiaolu, TAO Haihong, YANG Dong. Ground Moving Target Detection Based on Robust Principal Component Analysis and Shape Constraint[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462
Citation: GUO Xiaolu, TAO Haihong, YANG Dong. Ground Moving Target Detection Based on Robust Principal Component Analysis and Shape Constraint[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462

聯(lián)合圖形約束和穩(wěn)健主成分分析的地面動(dòng)目標(biāo)檢測算法

doi: 10.11999/JEIT151462
基金項(xiàng)目: 

國家自然科學(xué)基金(60971108),西安電子科技大學(xué)基本科研業(yè)務(wù)費(fèi)資助項(xiàng)目(BDY061428)

Ground Moving Target Detection Based on Robust Principal Component Analysis and Shape Constraint

Funds: 

The National Natural Science Foundation of China (60971108), Xidian University Foundation (BDY061428)

  • 摘要: 地面動(dòng)目標(biāo)檢測是多通道合成孔徑雷達(dá)系統(tǒng)的重要應(yīng)用。穩(wěn)健主成分分析的方法,因其可以將矩陣中低秩分量、稀疏分量及噪聲分量分離的特性,而在多個(gè)領(lǐng)域得到了廣泛應(yīng)用。然而,該方法受到非理想誤差影響,使得動(dòng)目標(biāo)檢測結(jié)果中存在大量的雜波擾動(dòng)點(diǎn),從而影響動(dòng)目標(biāo)的檢測性能。針對(duì)這一問題,該文提出一種聯(lián)合穩(wěn)健主成分分析和圖形約束的動(dòng)目標(biāo)檢測算法,結(jié)合系統(tǒng)參數(shù)對(duì)動(dòng)目標(biāo)區(qū)域進(jìn)行形狀約束,有效保證動(dòng)目標(biāo)檢測的同時(shí)去除雜波擾動(dòng)點(diǎn)。仿真和實(shí)測數(shù)據(jù)驗(yàn)證了該算法在強(qiáng)雜波背景下對(duì)動(dòng)目標(biāo)檢測的有效性和可行性。
  • WARD J. Space-time adaptive processing for airborne radar [C]. 1995 International Conference on Acoustics, Speech, and Signal Processing, Lexington, MA, 1995: 2809-2812. doi: 10.1049/ic:19980240.
    KLEMM R. Introduction to space-time adaptive processing[J]. Electronics Communication Engineering Journal, 1999, 11: 108-111. doi: 10.1049/ecej:19990102.
    SJOGREN T K, VU V T, PETTERSSON M I, et al. Suppression of clutter in multichannel SAR GMTI[J]. IEEE Transactions on Geoscience Remote Sensing, 2014, 52(7): 4005-4013. doi: 10.1109/TGRS.2013.2278701.
    RICHARDSON P G. STAP covariance matrix structure and its impact on clutter plus jamming suppression solutions[J]. Electronics Letters, 2001, 37(2): 118-119. doi: 10.1049/el: 20010090.
    WANG Y, CHEN J W, BAO Z, et al. Robust space-time adaptive processing for airborne radar[J]. IEEE Transactions on Aerospace Electronic Systems, 2003, 39(1): 70-81. doi: 10.1109/TAES.2003.1188894.
    WEINER D D, CAPRARO G T, and WICKS M C. An approach for utilizing known terrain and land feature data in estimation of the clutter covariance matrix[C]. IEEE International Radar Conference, Dallas, USA, 1998: 381-386. doi: 10.1109/NRC.1998.678032.
    GUO B, VU D, XU L, et al. Ground moving target indication via multichannel airborne SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3753-3764. doi: 10.1109/TGRS.2011.2143420.
    CANDES E J, LI X, MA Y, et al. Robust principal component analysis[J]. Journal of ACM, 2009, 8(1): 1-73.
    BUGEAU A and PEREZ P. Detection and segmentation of moving objects in complex scenes[J]. Computer Vision and Image Understanding, 2009, 113(4): 459-476. doi: 10.1016/ j.cviu.2008.11.005.
    DANG C and RADHA H. RPCA-KFE: key frame extraction for video using robust principal component analysis[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3742-3753. doi: 10.1109/TIP.2015.2445572.
    JAVED S, BOUWMANS T, and JUNG S K. Depth extended online RPCA with spatiotemporal constraints for robust background subtraction[C]. Workshop on Frontiers of Computer Vision, 2015: 1-6. doi: 10.1109/FCV.2015. 7103745.
    KHAJI R, LI H, LI H F, et al. Improved combination of RPCA and MEL for sparse representation-based face recognition[J]. International Journal of Wavelets Multiresolution Information Processing, 2014, 12(3): 911-922. doi: 10.1142/S0219691314500313.
    LUAN X, FANG B, LIU L H, et al. Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion[J]. Pattern Recognition, 2014, 47(2): 495-508. doi: 10.1016/j.patcog.2013.06.031.
    ELONS A S, AHMED M, and SHEDID H. Facial expressions recognition for Arabic sign language translation[C]. 2014 9th International Conference on Computer Engineering Systems (ICCES), Cairo, Egypt, 2014: 330-335. doi: 10.1109/ ICCES.2014.7030980
    HEIMAN E, SCHECHATMAN G, and SHRAIBMAN A. Deterministic algorithms for matrix completion[J]. Random Structures Algorithms, 2014, 45(2): 306-317. doi: 10.1002/rsa.20483.
    CANDES E J and PLAN Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2010, 98(6): 925-936. doi: 10.1109/ JPROC.2009.2035722.
    YAN H, WANG R, LI F, et al. Ground moving target extraction in a multichannel wide-area surveillance SAR/ GMTI system via the relaxed PCP[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 617-621. doi: 10.1109/LGRS.2012.2216248.
    ZHOU T Y and TAO D C. GoDec: Randomized low-rank sparse matrix decomposition in noisy case[C]. International Conference on Machine Learning, Washington, USA, 2011: 33-40.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1235
  • HTML全文瀏覽量:  112
  • PDF下載量:  513
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-12-24
  • 修回日期:  2016-05-23
  • 刊出日期:  2016-10-19

目錄

    /

    返回文章
    返回