分層認知無線電網(wǎng)絡中基于穩(wěn)定匹配的資源分配算法
doi: 10.11999/JEIT151460
基金項目:
國家自然科學基金(61471395, 61471392, 61301161),江蘇省自然科學基金(BK20141070)
Resource Allocation Algorithm Based on Stable Matching in Hierarchical Cognitive Radio Networks
Funds:
The National Natural Science Foundation of China (61471395, 61471392, 61301161), The Natural Science Foundation of Jiangsu Province (BK20141070)
-
摘要: 頻譜資源的合理分配是認知無線電技術追求的目標之一,隨著認知無線電網(wǎng)絡中的次用戶(SUs)數(shù)量不斷增加,頻譜資源的精確、實時分配與管控越來越難以實現(xiàn)。針對此問題,該文提出一種分層的認知無線電網(wǎng)絡(CRN)架構(gòu),多個管理實體專注于為各層用戶提供頻譜服務;并在該架構(gòu)下,提出一種基于穩(wěn)定匹配的資源分配算法,用戶通過自主協(xié)商形成分配結(jié)果,不僅保證了主用戶(PUs)對次用戶的功率限制,還充分考慮了各自的效用。仿真結(jié)果表明,所提算法的性能接近于最優(yōu)方案,并降低了計算復雜度和系統(tǒng)時延。Abstract: The rational spectrum resource allocation is one of the goals of Cognitive Radio (CR) technology. With the rapid increase of Secondary Users (SUs) numbers, the precise and real-time management becomes more and more difficult to achieve. In order to solve this problem, a hierarchical Cognitive Radio Network (CRN) architecture that several administration entities focus on providing spectrum services for users of variety tiers is proposed. The corresponding resource allocation algorithm based on stable matching in this architecture is also given. This algorithm guarantees the restriction on SUs transmission power for Primary Users (PUs), and also considers both utility functions of users. Simulation results demonstrate that the proposed method can roughly achieve the same performance of optimal solution with lower computation complexity and system delay.
-
Key words:
- Cognitive Radio (CR) /
- Resource allocation /
- Matching theory /
- Stable matching /
- Optimization
-
OSSEIRAN A, BRAUN V, HIDEKAZU T, et al. The foundation of the mobile and wireless communications system for 2020 and beyond: challenges, enablers and technology solutions[C]. IEEE Vehicular Technology Conference, Dresden, 2013: 1-5. doi: 10.1109/VTCSpring.2013.6692781. AHMAD A, AHMAD S, REHMANI M H, et al. A survey on radio resource allocation in cognitive radio sensor networks[J]. IEEE Communications Surveys Tutorials, 2015, 17(2): 888-917. doi: 10.1109/COMST.2015.2401597. VASSAKI S, POULAKIS M I, and PANAGOPOULOS A D. Spectrum leasing in cognitive radio networks: a matching theory approach[C]. IEEE Vehicular Technology Conference, Glasgow, 2015: 1-5. doi: 10.1109/VTCSpring.2015.7146101. MITOLA J, GUERCI J, REED J, et al. Accelerating 5G QoE via public-private spectrum sharing[J]. IEEE Communications Magazine, 2014, 52(5): 77-85. doi: 10.1109/ MCOM.2014.6815896. MUSAVIAN L and AISSA S. Capacity and power allocation for spectrum sharing communications in fading channels[J]. IEEE Transactions Wireless Communications, 2009, 8(1): 148-156. doi: 10.1109/TWC.2009.070265. ASGHARI V and AISSA S. Adaptive rate and power transmission in spectrum-sharing systems[J]. IEEE Transactions Wireless Communications, 2010, 9(10): 3272-3280. doi: 10119/TWC.2010.090210.100291. ZHOU X, LI G Y, LI D, et al. Probabilistic resource allocation for opportunistic spectrum access[J]. IEEE Transactions Wireless Communications, 2010, 9(9): 2870-2879. doi: 10119/ TWC.2010.070610.091511. 潘甦, 曹跑跑, 劉勝美. 一種多無線電系統(tǒng)中基于公平性和精細化帶寬分配的資源分配算法[J]. 電子與信息學報, 2015, 37(2): 399-404. doi: 10.11999/ JEIT140339. PAN S, CAO P, and LIU S. A resource allocation algorithm based on proportional fairness and refined bandwidth allocation for multi-radio systems[J]. Journal of Electronics Information Technology, 2015, 37(2): 399-404. doi: 10.11999/ JEIT140339. XU Y, ANPALAGAN A, WU Q, et al. Decision-theoretic distributed channel selection for opportunistic spectrum access: strategies, challenges and solutions[J]. IEEE Communications Surveys Tutorials, 2013, 15(4): 1689-1713. doi: 10.1109/ SURV.2013.030713.00189. IEEE 1900.5-2011. Standard for policy language requirements and system architectures for dynamic spectrum access (DSA) systems [S]. 2011. Al-Ali A K, SUN Y, FELICE M D, et al. Accessing spectrum databases using interference alignment in vehicular cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2015, 64(1): 263-272. doi: 10.1109/TVT.2014. 2318837. CHEN X and HUANG J. Database-assisted distributed spectrum sharing[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(11): 2349-2361. doi: 10.1109/ JSAC.2013.131110. GOLDSMITH A, JAFAR S A, MARIC I, et al. Breaking spectrum gridlock with cognitive radios: an information theoretic perspective[J]. Proceedings of the IEEE, 2009, 97(5): 894-914. doi: 10.1109/JPROC.2009.2015717. PAPADIMITRIOU C H and STEIGLITZ K. Combinatorial Optimization: Algorithms and Complexity[M]. New York, USA, Dover Press, 1998: 248-255. GUSFIELD D and IRVING R W. The Stable Marriage Problem: Structure and Algorithms[M]. Cambridge, MA, USA, MIT Press, 1989: 1-8. GALE D and SHAPLEY L S. College admissions and the stability of marriage[J]. The American Mathematical Monthly, 1962, 69(1): 9-15. doi: 10.2307/2312726. GU Y, SAAD W, BENNIS M, et al. Matching theory for future wireless networks: fundamentals and applications[J]. IEEE Communications Magazine, 2015, 53(5): 52-59. doi: 10.1109/ MCOM.2015.7105641. JORSWIECK E. Stable matchings for resource allocation in wireless networks[C]. International Conference on Digital Signal Processing (DSP), Corfu, 2011: 1-8. doi: 10.1109/ ICDSP.2011.6004983. NAEEM M, ANPALAGAN A, JASEEMUDDIN M, et al. Resource allocation techniques in cooperative cognitive radio networks[J]. IEEE Communications Surveys Tutorials, 2014, 16(2): 729-744. doi: 10.1109/SURV.102313.00272. MANLOVE D F. Algorithmics of Matching Under Preferences[M]. Singapore, World Scientific Press, 2013: 1-47. -
計量
- 文章訪問數(shù): 1418
- HTML全文瀏覽量: 179
- PDF下載量: 445
- 被引次數(shù): 0