Blind Detection of MIMO via Semidefinite Relaxation
Funds:
The National Natural Science Foundation of China (61401511)
-
摘要: 為解決MIMO系統(tǒng)盲檢測問題,該文以最大似然序列檢測為估計準(zhǔn)則,通過推導(dǎo)建立了一種新的半正定松弛(SemiDefinite Relaxation, SDR)求解模型,使得到的松弛解的秩等于發(fā)送天線數(shù)。為了解決了松弛解秩大于1時估計原始發(fā)送序列的難題,該文提出一種特征向量近似法和隨機法相結(jié)合的方法。通過限定目標(biāo)函數(shù)的取值上限,使算法能夠根據(jù)目標(biāo)函數(shù)值自適應(yīng)判斷求解發(fā)送序列個數(shù),從而減少每次求解的約束個數(shù)和SDR的求解次數(shù),分析表明算法的計算復(fù)雜度與發(fā)送天線數(shù)成線性關(guān)系。最后,通過仿真表明所提算法能夠在與秩1的算法性能保持相當(dāng)?shù)臈l件下減少計算時間,并驗證了算法計算復(fù)雜度與發(fā)送天線數(shù)成線性關(guān)系。Abstract: In order to solve the problem of blind detection of MIMO system, this paper takes maximum-likelihood sequence detection as the criterion and derives the formulas to get a model based on SemidDefinite Relaxation. The rank of SDR solution equals to the number of the transmit antennas. For the rank of SDR solution is greater than 1, a new method is proposed to approximate the solution of the original problem, which combines the eigenvector approximation method and randomization method. By setting the upper limit of objective function, the proposed method could judge the number of detection sequence adaptively and reduce constrains number and the number of solving SDR. The analysis shows that the computation complexity of proposed method has linear relationship with the number of transmit antennas. At last, simulation results indicate that compared with Rank-1 algorithm, the proposed detector could provide the same bit error performance with decrease of computation cost, and validate the linear relationship between the computation complexity and the number of transmit antennas.
-
LUO Zhiquan, MA Wingkin, ANTHONY S M, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20-34. 羅濤, 劉宏偉, 嚴(yán)俊坤, 等. 基于半正定秩松弛方法的穩(wěn)健波束形成[J]. 電子與信息學(xué)報, 2014, 36(7): 1545-1551. doi: 10.3724/SP.J.1146.2013.01046. LUO Tao, LIU Hongwei, YAN Junkun, et al. Robust beamforming via semidefinite rank relaxation[J]. Journal of Electronics Information Technology, 2014, 36(7): 1545-1551. doi: 10.3724/SP.J.1146.2013.01046. MA Wingkin, DAVIDSON T N, WONG K M, et al. Quasi- maximum-likelihood multiuser detection using semi-definite relaxation with application to synchronous CDMA[J]. IEEE Transactions on Signal Processing, 2002, 50(4): 912-922. STEINGIMSSON B, LUO Zhiquan, and WONG K. Soft quasi-maximum-likelihood detection for multiple-antenna wireless channels[J]. IEEE Transactions on Signal Processing, 2003, 51(11): 2710-2719. NEKUII M, KISIALIOU M, DAVIDSON T N, et al. Efficient soft-output demodulation of MIMO QPSK via semidefinite relaxation[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(8): 1426-1437. MA Wingkin, CHING Pakchung, and DING Zhi. Semidefinite relaxation based multiuser detection for M-ary PSK multiuser systems[J]. IEEE Transaction on Signal Processing, 2004, 52(10): 2862-2872. WIESEL A, ELDAR Y C, and SHAMAI S. Semidefinite relaxation for detection of 16-QAM signaling in MIMO channels[J]. IEEE Signal Processing Letters, 2005, 12(9): 653-656. SHAO Z Y, CHEUNG S W, and YUK T I. Comparison of semidefinite relaxation detectors for high-order modulation MIMO systems[J]. International Journal of Antennas and Propagation, 2014, 6(3): 1-8. JALDEN J, MARTIN C, and OTTERSTEN B. Semidefinite programming for detection in linear systems-optimality conditions and space-time decoding[C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, 2003: 9-12. KIM Minjoon, PARK Jangyong, KIM Kilhwan, et al. Exact ML criterion based on semidefinite relaxation for MIMO systems[J]. IEEE Signal Processing Letters, 2014, 21(3): 343-346. JALDEN J and OTTERSTEN B. The diversity order of the semidefinite relaxation detector[J]. IEEE Transactions on Information Theory, 2008, 54(4): 1406-1422. XU Zi, HONG Mingyi, and LUO Zhiquan. Probabilistic analysis of semidefinite relaxation for binary quadratic minimization[J]. SIAM Journal on Optimization, 2014, 24(3): 1265-1293. 韓飛. 正交空時分組碼的最大似然盲檢測算法研究[D]. [碩士論文], 西南交通大學(xué), 2014. LI Qingyu, BAI Erwei, and DING Zhi. Blind source separation of signals with known alphabets using epsi- approximation algorithms[J]. IEEE Transactions on Signal Processing, 2003, 51(1): 1-10. MANUEL A and MIGUEZ V J. Maximum-likelihood sequence detection in time- and frequency-selective MIMO channels with unknown order[J]. IEEE Transactions on Vehicular Technology, 2009, 58(1): 499-504. -
計量
- 文章訪問數(shù): 1651
- HTML全文瀏覽量: 222
- PDF下載量: 398
- 被引次數(shù): 0