Lossless Compression of Hyperspectral Images Using K-means Clustering and Conventional Recursive Least-squares Predictor
Funds:
The National Natural Science Foundation of China (41101419)
-
摘要: 針對基于預測的高光譜圖像無損壓縮算法壓縮比低的問題,該文將聚類算法與高光譜圖像預測壓縮算法相結合,提出一種基于K-均值聚類和傳統(tǒng)遞歸最小二乘法的高光譜圖像無損壓縮算法。首先,對高光譜圖像按光譜矢量進行K-均值聚類以提升同類光譜矢量間的相似度。然后,對每一聚類群分別使用傳統(tǒng)遞歸最小二乘法進行預測,消除高光譜圖像的空間冗余和譜間冗余。最后,對預測誤差圖像進行算術編碼,完成高光譜圖像壓縮過程。對AVIRIS 2006高光譜數(shù)據(jù)進行仿真實驗,所提算法對16位校正圖像、16位未校正圖像和12位未校正圖像分別取得了4.63倍,2.82倍和4.77倍的壓縮比,優(yōu)于同類型已報道的各種算法。Abstract: To improve the compression ratio of lossless compression scheme based on prediction, a lossless compression scheme for hyperspectral images using K-means Clustering method and Conventional Recursive Least-Squares (C-CRLS) predictor is presented in this paper. The proposed scheme first clusters the spectral data into clusters according to their spectra using the famous K-means clustering method. Then, the proposed scheme calculates the preliminary estimates to form the input vector of the conventional recursive least-squares predictor. Finally, after prediction, the prediction residuals are sent to the arithmetic coder. Experiments on the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 2006 hyperspectral images show that the proposed scheme yields an average compression ratio of 4.63, 2.82, and 4.77 on the 16-bit calibrated images, the 16-bit uncalibrated images, and the 12-bit uncalibrated images, respectively. Experimental results demonstrate that the proposed scheme outperforms other current state-of-the-art schemes for hyperspectral images that have been previously reported.
-
Key words:
- Hyperspectral images /
- Image compression /
- Recursive least-squares /
- Clustering
-
MIELIKAINEN J. Lossless compression of hyperspectral images using lookup tables[J]. IEEE Signal Processing Letters, 2006, 13(3): 157-160. doi: 10.1109/LSP.2005.862604. HUANG B and SRIRAJA Y. Lossless compression of hyperspectral imagery via lookup tables with predictor selection[C]. Conference on Image and Signal Processing for Remote Sensing XII, Stockholm, Sweden, 2006: 63650L.1- 63650L.8. doi: 10.1117/12.690659. MIELIKAINEN J and TOIVANEN P. Lossless compression of hyperspectral images using a quantized index to lookup tables[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 474-478. doi: 10.1109/LGRS.2008.917598. KLIMESH K. Low-complexity adaptive lossless compression of hyperspectral imagery[C]. Conference on Satellite Data Compression, Communications, and Archiving II, San Diego, USA, 2006: 63000N-1-63000N-9. doi: 10.1117/12.682624. LIN Chengchen and HWANG Yintsung. An efficient lossless compression scheme for hyperspectral images using two-stage prediction[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 558-562. doi: 10.1109/LGRS.2010.2041630. SONG Jinwei, ZHANG Zhongwei, and CHEN Xiaomin. Lossless compression of hyperspectral imagery via RLS filter[J]. Electronics Letters, 2013, 49(16): 992-993. doi: 10.1049/el.2013.1315. ABRARDO A, BARNI M, MAGLI E, et al. Error-resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 1892-1904. doi: 10.1109/TGRS.2009.2033470. RIZZO F, CARPENTIERI B, MOTTA G, et al. Low- complexity lossless compression of hyperspectral imagery via linear prediction[J]. IEEE Signal Processing Letters, 2005, 12(2): 138-141. doi: 10.1109/LSP.2004.840907(410). MAGLI E. Multiband lossless compression of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4): 1168-1178. doi: 10.1109/TGRS. 2008.2009316. MIELIKAINEN J and TOIVANEN P. Clustered DPCM for the lossless compression of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12): 2943-2946. doi: 10.1109/TGRS.2003.820885. AIAZZI B, ALPARONE L, BARONTI S, et al. Crisp and fuzzy adaptive spectral predictions for lossless and near-lossless compression of hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 532-536. doi: 10.1109/LGRS.2007.900695. WU Jiaji, KONG Wanqiu, MIELIKAINEN J, et al. Lossless compression of hyperspectral imagery via clustered differential pulse code modulation with removal of local spectral outliers[J]. IEEE Signal Processing Letters, 2015, 22(12): 2194-2198. doi: 10.1109/LSP.2015.2443913. ULKU I and TOREYIN B U. Sparse representations for online-learning-based hyperspectral image compression[J]. Applied Optics, 2015, 54(29): 8625-8631. doi: 10.1364/AO.54.008625. WANG Lei, BAI Jing, WU Jiaji, et al. Hyperspectral image compression based on lapped transform and Tucker decomposition[J]. Signal Processing: Image Communication, 2015, 36: 63-69. doi: 10.1016/j.image.2015.06.002. BEERTEN J, BLANES I, and SERRA-SAGRISTA J. A fully embedded two-stage coder for hyperspectral near-lossless compression[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1775-1779. doi: 10.1109/LGRS.2015.2425548. LEE C, YOUN S, JEONG T, et al. Hybrid compression of hyperspectral images based on PCA with pre-encoding discriminant information[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1491-1495. doi: 10.1109/LGRS. 2015.2409897. ZHAO Chunhui, LI Xiaohui, REN Jinchang, et al. A novel framework for object-based coding and compression of hyperspectral imagery[J]. Chinese Journal of Electronics, 2015, 24(2): 300-305. doi: 10.1049/cje.2015.04.012. NIAN Yongjian, HE Mi, and WAN Jianwei. Lossless and near-lossless compression of hyperspectral images based on distributed source coding[J]. Journal of Visual Communication and Image Representation, 2015, 28: 113-119. doi: 10.1016/j.jvcir.2014.06.008. ZHANG Lefei, ZHANG Liangpei, TAO Dacheng, et al. Compression of hyperspectral remote sensing images by tensor approach[J]. Neurocomputing, 2015, 147(1): 358-363. doi: 10.1016/j.neucom.2014.06.052. HUANG Bingchao, NIAN Yongjian, and WAN Jianwei. Distributed lossless compression algorithm for hyperspectral images based on classification[J]. Spectroscopy Letters, 2015, 48(7): 528-535. doi: 10.1080/00387010.2014.920888. JAIN A K. Data clustering: 50 years beyond k-means[C]. 19th International Conference on Pattern Recognition, Tampa, USA, 2010: 651-666. DINIZ P S R. Adaptive Filtering: Algorithms and Practical Implementation[M]. New York, Springer, 2012: 195-227. MOFFAT A, NEAL R, and WITTEN I H. Arithmetic coding revisited[C]. Data Compression Conference, Snowbird, USA, 1995: 202-211. -
計量
- 文章訪問數(shù): 1893
- HTML全文瀏覽量: 154
- PDF下載量: 654
- 被引次數(shù): 0