基于壓縮感知的加速前向后向匹配追蹤算法
doi: 10.11999/JEIT151422
-
1.
(南開大學(xué)電子信息與光學(xué)工程學(xué)院 天津 300350) ②(上海交通大學(xué)電子信息與電氣工程學(xué)院 上海 200030)
國家自然科學(xué)基金(61171140),高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20130031110032)
Acceleration Forward-backward Pursuit Algorithm Based on Compressed Sensing
-
1.
(College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China)
-
2.
(School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200030, China)
The National Natural Science Foundation of China (61171140), The Doctoral Program of Higher Education (20130031110032)
-
摘要: 前向后向匹配追蹤(FBP)算法作為一個(gè)新穎的兩階段貪婪逼近算法,因?yàn)檩^高的重構(gòu)精度和不需要稀疏度作為先驗(yàn)信息的特點(diǎn),受到了人們的廣泛關(guān)注。然而,F(xiàn)BP算法必須運(yùn)行更多的時(shí)間才能得到更高的精度。鑒于此,該文提出加速前向后向匹配追蹤(AFBP)算法。該算法利用每次迭代中候選支撐集的信息,實(shí)現(xiàn)對已刪除原子的再次加入,以此減少算法迭代次數(shù)。通過不同非零項(xiàng)分布的稀疏信號和稀疏圖像的仿真結(jié)果表明,相對于FBP算法,該文提出的方案在不降低重構(gòu)精度的同時(shí),大幅降低了算法運(yùn)行時(shí)間。
-
關(guān)鍵詞:
- 壓縮感知 /
- 貪婪算法 /
- 前向后向搜索 /
- 稀疏信號重構(gòu)
Abstract: The Forward-Backward Pursuit (FBP) algorithm, a novel two stage greedy approach, receives wide attention due to the high reconstruction accuracy and the feature without prior information of the sparsity. However, FBP has to run more time to get a higher precision. To alleviate this drawback, this paper proposes the Acceleration Forward-Backward Pursuit (AFBP) algorithm based on Compressed Sensing (CS). In order to reduce the number of iterations, the algorithm exploits the information available in the support estimate to add the deleted atoms again. The run time of AFBP is sharply shorter than that of FBP, while the precision of AFBP is not lower than FBP. The efficacy of the proposed scheme is demonstrated by simulations using random sparse signals with different nonzero coefficient distributions and a sparse image. -
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52 (4): 1289-1306. doi: 10.1109/TIT.2006.871582. CANDS E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083. 李鵬,王建新,曹建農(nóng). 無線傳感器網(wǎng)絡(luò)中基于壓縮感知和GM(1,1)的異常檢測方案[J]. 電子與信息學(xué)報(bào), 2015, 37(7): 1586-1590. doi: 10.11999/JEIT141219. LI Peng, WANG Jianxin, and CAO Jiannong. Abnormal event detection scheme based on compressive sensing and GM (1,1) in wireless sensor networks[J]. Journal of Electronics Information Technology, 2015, 37(7): 1586-1590. doi: 10.11999/JEIT141219. 蔣明峰, 劉淵, 徐文龍, 等. 基于全變分?jǐn)U展方法的壓縮感知磁共振成像算法研究[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2608-2612. doi: 10.11999/JEIT150179. JIANG Mingfeng, LIU Yuan, XU Wenlong, et al. The study of compressed sensing MR image reconstruction algorithm based on the extension of total variation method[J]. Journal of Electronics Information Technology, 2015, 37(11): 2608-2612. doi: 10.11999/JEIT150179. QU X, HOU Y, FAN L, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator[J]. Medical Image Analysis, 2014, 18(6): 843-856. doi: 10.1016/j.media.2013.09.007. MALLAT S G and ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1994, 41(12): 3397-3415. doi: 10.1109/78.258082. TROPP J and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108. DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121. doi: 10.1109/ TIT.2011.2173241. DAI W and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249. doi: 10.1109/TIT.2009.2016006. NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321. doi: 10.1016/j.acha.2008.07.002. DO T T, GAN L, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. 42nd IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2008: 581-587. doi: 10.1109/ACSSC.2008.5074472. CHATTERJEE S, SUNDMAN D, and SKOGLUND M. Look ahead orthogonal matching pursuit[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011: 4024-4027. doi: 10.1109/ICASSP.2011.5947235. KARAHANOGLU N B and ERDOGAN H. Compressed sensing signal recovery via forward-backward pursuit[J]. Digital Signal Processing, 2013, 23(5): 1539-1548. doi: 10.1016/j.dsp.2013.05.007. AMBAT S K and HARI K V S. An iterative framework for sparse signal reconstruction algorithms[J]. Signal Processing, 2015, 108: 351-364. doi: 10.1016/j.sigpro.2014.09.023. AMBAT S K, CHATTERJEE S, and HARI K V S. Progressive fusion of reconstruction algorithms for low latency applications in compressed sensing[J]. Signal Processing, 2014, 97(7): 146-151. doi: 10.1016/j.sigpro.2013. 10.019. AMBAT S K, CHATTERJEE S, and HARI K V S. A committee machine approach for compressed sensing signal reconstruction[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1705-1717. doi: 10.1109/TSP.2014.2303941. DEEPA K G, AMBAT S K, and HARI K V S. Modified greedy pursuits for improving sparse recovery[C]. Twentieth IEEE National Conference on Communications (NCC), Kanpur, 2014: 1-5. doi: 10.1109/NCC.2014.6811370. -
計(jì)量
- 文章訪問數(shù): 1684
- HTML全文瀏覽量: 160
- PDF下載量: 529
- 被引次數(shù): 0