基于馬爾科夫模型的認(rèn)知無(wú)線電動(dòng)態(tài)雙門(mén)限能量檢測(cè)策略
doi: 10.11999/JEIT151400
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61501496),陜西省自然科學(xué)基金(2012JM8004),航空科學(xué)基金(2013ZC15008)
Dynamic Double Threshold Energy Detection Based on Markov Model in Cognitive Radio
Funds:
The National Natural Science Foundation of China (61501496), The Natural Science Foundation of Shaanxi Province (2012JM8004), The Aeronautical Science Foundation of China (2013ZC15008)
-
摘要: 該文針對(duì)低信噪比條件下頻譜感知精度低的問(wèn)題,提出一種基于馬爾科夫模型的動(dòng)態(tài)雙門(mén)限能量檢測(cè)算法。該算法根據(jù)信道時(shí)變特性建立基于馬爾科夫的頻譜占用模型,利用信道歷史狀態(tài)信息實(shí)現(xiàn)模型參數(shù)的修正。然后采用先聽(tīng)后說(shuō)的機(jī)制對(duì)處于雙門(mén)限之間的困惑信道狀態(tài)進(jìn)行判決,并詳細(xì)分析了噪聲不確定性對(duì)頻譜感知性能的影響。在此基礎(chǔ)上,為了克服噪聲不確定性的影響,以頻譜檢測(cè)概率最大為優(yōu)化目標(biāo),對(duì)雙門(mén)限進(jìn)行實(shí)時(shí)更新。仿真結(jié)果表明,所提頻譜感知算法在減小噪聲不確定性影響的同時(shí)增加了頻譜感知精度,降低了認(rèn)知用戶的感知時(shí)間。
-
關(guān)鍵詞:
- 頻譜感知 /
- 能量檢測(cè) /
- 馬爾科夫模型 /
- 動(dòng)態(tài)雙門(mén)限
Abstract: With the development of the technology of cognitive radio, the standards of spectrum sensing performance become the higher and the higher, especially in low Signal-to-Noise Ratio (SNR) environments. A Dynamic Double-threshold Energy sensing method based on Markov Model (DDEMM) is proposed in this paper. By following the double-threshold energy sensing approach, the modified Markov model that accounts for the time varying nature of the channel occupancy is presented to resolve the confused channel state. Furthermore, in order to overcome the effect of noise uncertainty, a dynamic double-threshold spectrum sensing method is proposed, which adjusts its thresholds according to the achievable maximal detection probability. The results of extensive simulation demonstrate that the proposed DDEMM can achieve better detection performance than the conventional double-threshold energy sensing schemes, especially under very low SNR region.-
Key words:
- Spectrum sensing /
- Energy detection /
- Markov model /
- Dynamic double-threshold
-
YUE W J, ZHENG B Y, MENG Q M, et al. Robust cooperative spectrum sensing schemes for fading channels in cognitive radios networks[J]. Sicence China, 2011, 41(2): 207-218. doi: 10.1007/s11432-010-4147-x. LOREDANA A and DANIELE T. Statistical modeling of spectrum sensing energy in multi-hop cognitive radio networks[J]. IEEE Signal Processing Letters, 2015, 22(3): 356-360. doi: 10.1109/LSP.2014.2360234. YCEK and ARSLAN H. A survey of spectrum sensing algorithms for cognitive radio applications[J]. IEEE Communications Surveys Tutorials, 2009, 11(1): 116-130. doi: 10.1109/SURV.2009.090109. GILBERT S, KUHN F, NEWPORT C, et al. Efficient communication in cognitive radio networks[C]. Proceedings of ACM SPDC. California, USA, 2015: 119-128. doi: 10.1145 /2767386.2767422. BAGWARI A, TOMAR G S, and VERMA S. Cooperative spectrum sensing based on two-stage detectors with multiple energy detectors and adaptive double threshold in cognitive radio networks[J]. Canadian Journal of Electrical and Computer Engineering, 2013, 36(4): 172-180. doi: 10.1109/ CJECE.2014.2303519. MALEKI S, PANDHARIPANDE A, and LEUS G. Two-stage spectrum sensing for cognitive radios[C]. Proceedings of IEEE ICASSP. New York, USA, 2010: 2946-2949. doi: 10.1109/ICASSP.2010.5496149. CHEN C X, FU H, NIU Z D, et al. Cooperative spectrum sensing algorithm based on double-threshlod energy detection[J]. Systems Engineering and Electronics, 2013, 35(8): 1742-1746. doi: 10.3969/j.issn.1001-506X.2013.08.26. HORGAN D and MURPHY C. Voting rule optimisation for double threshold energy detector-based cognitive radio networks[C]. Proceedings of IEEE 4th International Conference on Signal Processing and Communicating Systems, Australia, 2010: 1-8. doi: 10.1109/ICSPCS.2010.- 5709679. FANG L, WANG J K, and HAN Y H. An adaptive double thresholds scheme for spectrum sensing in cognitive radio networks[J]. Defence Science Journal, 2013, 63(1): 47-52. doi: 10.1109/ICSPCC.2013.6664104. HERATH S, RAJATHEVA N, and TELLAMBURA C. Energy detection of unknown signals in fading and diversity reception[J]. IEEE Transactions on Communications, 2011, 59(9): 2443-2453. doi: 10.1109/TCOMM.2011.071111.090349. SUN H J and NALLANATHAN A. Wideband spectrum sensing for cognitive radio networks: a survey[J]. IEEE Wireless Communications, 2013, 20(2): 74-81. doi: 10.1109/ MWC.2013.6507397. CABRIC D, TKACHENKO A, and BRODERSEN R W. Experimental study of spectrum sensing based on energy detection and network cooperation[C]. Proceedings of the First International Workshop on Technology and Policy for Accessing Spectrum. New York, USA, 2006: 12. doi: 10.1145/1234388.1234400. LI Z X, WANG H, and KONG J. A two-step spectrum sensing scheme for cognitive radio network[C]. Proceeding of the International Conference on Information Science and Technology. Nanjing, China, 2011: 694-698. doi: 10.1109/ ICIST.2011.5765341. ZENG Y and LIANG Y C. Spectrum sensing algorithms for cognitive radio based on statistical covariances[J]. IEEE Transactions on Vehicular Technology, 2009, 58(4): 1804-1815. doi: 10.1109/TVT.2008.2005267. CHEN W B, YANG C K, and HUANG Y H. Energy-saving cooperative spectrum sensing processor for cognitive radio systems[J]. IEEE Transactions on Circuits and Systems, 2011, 58(4): 711-723. doi: 10.1109/TCSI.2010.2078691. ATAPATTU S, TELLAMBURA C, HAI J, et al. Unified analysis of low-SNR energy detection and threshold selection[J]. IEEE Transactions on Circcular Technology, 2015, 64(11): 5006-5019. doi: 10.1109/TVT.2014.2381648. 謝顯中, 胡小峰, 馬彬. 噪聲功率不確定性區(qū)間估計(jì)和降低SNA WALL惡化的能量檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2014, 36(2): 364-370. doi: 10.3724/SP.J.1146.2013.00928. XIE X Z, HU X F, and MA B. Estimation of noise power uncertainty interval and energy detector with lowering SNR WALL detection[J]. Journal of Electronics Information Technology, 2014, 36(2): 364-370. doi: 10.3724/SP.J.1146. 2013.00928. SHEN B, WANG S, and HUANG Q. Gerschgorin disk theorem based spectrum sensing for wideband cognitive radio[J]. Journals on Communications, 2014, 35(4): 1-10. doi: 10.1109/ICASSP.2014.6855013. ATAOLLAH E, MARYAM N, SEYED M H A, et al. Sensor selection and optimal energy detection threshold for efficient cooperative spectrum sensing[J]. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1565-1577. doi: 10.1109/ TVT.2014.2331681. -
計(jì)量
- 文章訪問(wèn)數(shù): 1330
- HTML全文瀏覽量: 183
- PDF下載量: 414
- 被引次數(shù): 0