一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于深度卷積神經(jīng)網(wǎng)絡(luò)和二進(jìn)制哈希學(xué)習(xí)的圖像檢索方法

彭天強(qiáng) 栗芳

彭天強(qiáng), 栗芳. 基于深度卷積神經(jīng)網(wǎng)絡(luò)和二進(jìn)制哈希學(xué)習(xí)的圖像檢索方法[J]. 電子與信息學(xué)報, 2016, 38(8): 2068-2075. doi: 10.11999/JEIT151346
引用本文: 彭天強(qiáng), 栗芳. 基于深度卷積神經(jīng)網(wǎng)絡(luò)和二進(jìn)制哈希學(xué)習(xí)的圖像檢索方法[J]. 電子與信息學(xué)報, 2016, 38(8): 2068-2075. doi: 10.11999/JEIT151346
PENG Tianqiang, LI Fang. Image Retrieval Based on Deep Convolutional NeuralNetworks and Binary Hashing Learning[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2068-2075. doi: 10.11999/JEIT151346
Citation: PENG Tianqiang, LI Fang. Image Retrieval Based on Deep Convolutional NeuralNetworks and Binary Hashing Learning[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2068-2075. doi: 10.11999/JEIT151346

基于深度卷積神經(jīng)網(wǎng)絡(luò)和二進(jìn)制哈希學(xué)習(xí)的圖像檢索方法

doi: 10.11999/JEIT151346
基金項目: 

國家自然科學(xué)基金(61301232)

Image Retrieval Based on Deep Convolutional NeuralNetworks and Binary Hashing Learning

Funds: 

The National Natural Science Foundation of China (61301232)

  • 摘要: 隨著圖像數(shù)據(jù)的迅猛增長,當(dāng)前主流的圖像檢索方法采用的視覺特征編碼步驟固定,缺少學(xué)習(xí)能力,導(dǎo)致其圖像表達(dá)能力不強(qiáng),而且視覺特征維數(shù)較高,嚴(yán)重制約了其圖像檢索性能。針對這些問題,該文提出一種基于深度卷積神徑網(wǎng)絡(luò)學(xué)習(xí)二進(jìn)制哈希編碼的方法,用于大規(guī)模的圖像檢索。該文的基本思想是在深度學(xué)習(xí)框架中增加一個哈希層,同時學(xué)習(xí)圖像特征和哈希函數(shù),且哈希函數(shù)滿足獨立性和量化誤差最小的約束。首先,利用卷積神經(jīng)網(wǎng)絡(luò)強(qiáng)大的學(xué)習(xí)能力挖掘訓(xùn)練圖像的內(nèi)在隱含關(guān)系,提取圖像深層特征,增強(qiáng)圖像特征的區(qū)分性和表達(dá)能力。然后,將圖像特征輸入到哈希層,學(xué)習(xí)哈希函數(shù)使得哈希層輸出的二進(jìn)制哈希碼分類誤差和量化誤差最小,且滿足獨立性約束。最后,給定輸入圖像通過該框架的哈希層得到相應(yīng)的哈希碼,從而可以在低維漢明空間中完成對大規(guī)模圖像數(shù)據(jù)的有效檢索。在3個常用數(shù)據(jù)集上的實驗結(jié)果表明,利用所提方法得到哈希碼,其圖像檢索性能優(yōu)于當(dāng)前主流方法。
  • LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005: 886-893.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems, South Lake Tahoe, Nevada, US, 2012: 1097-1105.
    DATAR M, IMMORLICA N, INDYK P, et al. Locality sensitive hashing scheme based on p-stable distributions[C]. Proceedings of the ACM Symposium on Computational Geometry, New York, USA, 2004: 253-262.
    ZHANG Lei, ZHANG Yongdong, ZHANG Dongming, et al. Distribution-aware locality sensitive hashing[C]. 19th International Conference on Multimedia Modeling, Huangshan, China, 2013: 395-406.
    KONG Weihao and LI Wujun. Isotropic hashing[C]. Advances in Neural Information Processing Systems, South Lake Tahoe, Nevada, US, 2012: 1646-1654.
    WEISS Y, TORRALBA A, and FERGUS R. Spectral hashing[C]. Advances in Neural Information Processing Systems, Vancouver, Canada, 2009: 1753-1760.
    GONG Yunchao, LAZEBNIK S, GORDO A, et al. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(12): 2916-2929.
    WANG Jun, KUMAR S, and CHANG Shihfu. Semi-Supervised hashing for large scale search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(12): 2393-2406.
    KULIS B and DARRELL T. Learning to hash with binary reconstructive embeddings[C]. Advances in Neural Information Processing Systems, Vancouver, Canada, 2009: 1042-1052.
    LIU Wei, WANG Jun, JI Rongrong, et al. Supervised hashing with kernels[C]. Computer Vision and Pattern Recognition, Providence, RI, 2012: 2074-2081.
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Computer Vision and Pattern Recognition, Ohio, Columbus, 2014: 580-587.
    OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]. Computer Vision and Pattern Recognition, Ohio, Columbus, 2014: 1717-1724.
    RAZAVIAN A, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: an astounding baseline for recognition[C]. Computer Vision and Pattern Recognition, Ohio, Columbus, 2014: 806-813.
    XIA Rongkai, PAN Yan, LAI Hanjiang, et al. Supervised hashing for image retrieval via image representation learning[C]. Proceedings of the AAAI Conference on Artificial Intelligence, Qubec, Canada, 2014: 2156-2162.
    LAI Hanjiang, PAN Yan, LIU Ye, et al. Simultaneous feature learning and hash coding with deep neural networks[C]. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 3270-3278.
    LIN K, YANG H F, HSIAO J H, et al. Deep learning of binary hash codes for fast image retrieval[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 27-35.
    GIONIS A, INDYK P, and MOTWANI R. Similarity search in high dimensions via hashing[C]. Proceedings of the International Conference on Very Large Data Bases, Edinburgh, Scotland, UK, 1999: 518-529.
    KRIZHEVSKY A and HINTON G. Learning multiple layers of features from tiny images[R]. Technical Report, University of Toronto, 2009.
    CHUA TatSeng, TANG Jinhui, HONG Richang, et al. NUS-WIDE: A real-world Web image database from national university of singapore[C]. Proceedings of the ACM International Conference on Image and Video Retrieval, Greece, 2009: 48.
    LIU Wei, WANG Jun, Kumar Sanjiv, et al. Hashing with graphs[C]. Proceedings of the 28th International Conference on Machine Learning, Bellevue, Washington, USA, 2011: 1-8.
  • 加載中
計量
  • 文章訪問數(shù):  2230
  • HTML全文瀏覽量:  217
  • PDF下載量:  1324
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-12-01
  • 修回日期:  2016-04-29
  • 刊出日期:  2016-08-19

目錄

    /

    返回文章
    返回