基于生物位置細胞放電機理的空間位置表征方法
doi: 10.11999/JEIT151331
-
1.
(空軍工程大學信息與導航學院 西安 710077) ②(西安通信學院 西安 710106)
基金項目:
國家自然科學基金(61273048)
A Method of Spatial Place Representation Based on Biological Place Cells Firing
-
1.
(Information and Navigation College, Air Force Engineering University, Xi&rsquo
Funds:
The National Natural Science Foundation of China (61273048)
-
摘要: 為實現(xiàn)運行體智能自主定位,該文提出基于生物位置細胞放電機理的空間位置表征方法。首先建立運行體空間位置與運行體和不同路標之間距離的對應關(guān)系,以兩種不同的空間覆蓋方式構(gòu)建位置細胞圖,然后利用感知的距離信息激發(fā)位置細胞放電估計運行體位置,并分析了模型中各參數(shù)對空間位置表征和定位性能的影響。仿真結(jié)果表明,兩種方法均能通過構(gòu)建的位置細胞圖實現(xiàn)空間位置表征和自主定位,但等間隔離散空間構(gòu)建位置細胞圖方法受距離間隔影響較大,而任意探索構(gòu)建位置細胞圖方法從生物自主感知空間位置的角度出發(fā),通過選擇合適的距離閾值和運動訓練時間構(gòu)建位置細胞圖,能夠更好地完成運行體空間位置表征并且定位精度也較高。Abstract: In order to realize intelligent and autonomous navigation of vehicles, a method of spatial place representation based on biological place cells firing is proposed. A relationship is built that the spatial location of vehicle is corresponding with the distances between the vehicle and different landmarks, and a map of place cells is constructed in two different ways of space coverage. Then using the real-time distances sensed inspires place cells firing so as to estimate the location of the vehicle. An analysis is carried out about different parameters in the model influence on spatial location expression and the performance of positioning. The simulation results show that both two ways can realize location expression and autonomous positioning through using the map of place cells. The way that the space is separated equally is influenced by the distance interval greatly, and the way of building the map of place cells through exploring randomly, starting off with the perspective of sensing spatial location autonomously, can finish spatial location expression and autonomous positioning better through choosing appropriate interval and trained time.
-
Key words:
- Autonomous navigation /
- Biological positioning /
- Spatial representation /
- Place cell
-
BURGESS N. The 2014 nobel prize in physiology or medicine: A spatial model for cognitive neuroscience[J]. Neuron, 2014, 84(6): 1120-1125. DERDIKMAN D and MOSER E I. A manifold of spatial maps in the brain[J]. Trends in Cognitive Sciences, 2010, 14(12): 561-569. OKEEFE J and DOSLROVSKV J. The hippocampus as a spatial map[J]. Brain Research, 1971, 34(1): 171-175. PFEIFFER B E and FOSTER D J. Hippocampal place-cell sequences depict future paths to remembered goals[J]. Nature, 2013, 497: 74-79. DAVACHI L and DUBROW S. How the hippocampus preserves order: the role of prediction and context[J]. Trends in Cognitive Sciences, 2015, 19(2): 92-99. WILLS T J and CACUCCI F. The development of the hippocampal neural representation of space[J]. Current Opinion in Neurobiology, 2014, 24: 111-119. MADL T, CHEN K, MONTALDI D, et al. Computational cognitive models of spatial memory in navigation space: a review[J]. Neural Networks, 2015, 65: 18-43. HOWARD L R, JAVADI A H, YU Y, et al. The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation[J]. Current Biology, 2014, 24(12): 1331-1340. RAYMOND P K and EDMUND T R. A computational theory of hippocampal function, and tests of the theory: new developments[J]. Neuroscience and Biobehavioral Reviews, 2015, 48: 92-147. HUGO J S and BARRY C. Neural systems supporting navigation[J]. Current Opinion in Behavioral Sciences, 2015, 1: 47-55. BARRY C and BURGESS N. Neural mechanisms of self- location[J]. Current Biology, 2014, 24: 330-339. GIOVANNANGELI C and GAUSSIER P. Autonomous vision-based navigation: goal-oriented action planning by transient states prediction, cognitive map building, and sensory-motor learning[C]. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, 2008: 22-26. JAUFFRET A, CUPERLIER N, GAUSSIER P, et al. Multimodal integration of visual place cells and grid cells for navigation tasks of a real robot[C]. 12th International Conference on Simulation of Adaptive Behavior(SAB 2012), Odense, 2012: 136-145. ERDEM U M, MILFORD M J, and HASSELMO M E. A hierarchical model of goal directed navigation selects trajectories in a visual environment[J]. Neurobiology of Learning and Memory, 2015, 117: 109-121. ERDEM U M and HASSELMO M E. A biologically inspired hierarchical goal directed navigation model[J]. Journal of Physiology-Paris, 2014, 108: 28-37. OKEEFE J and BURGESS N. Geometrical determinants of the place fields of hippocampal neurons[J]. Nature, 1996, 381: 425-428. 李偉龍, 吳德偉, 杜佳, 等. 用于無人機自主定位的仿生視覺路標獲取方法[J]. 儀器儀表學報, 2015, 36(6): 1207-1214. LI Weilong, WU Dewei, DU Jia, et al. The landmark acquisition method based on bionic vision for UAV autonomous positioning[J]. Chinese Journal of Scientific Instrument, 2015, 36(6): 1207-1214. -
計量
- 文章訪問數(shù): 1487
- HTML全文瀏覽量: 127
- PDF下載量: 411
- 被引次數(shù): 0