一種-100 dB電源抑制比的非帶隙基準(zhǔn)電壓源
doi: 10.11999/JEIT151256
-
2.
(中國科學(xué)院電子學(xué)研究所 北京 100190) ②(中國科學(xué)院大學(xué) 北京 100190)
基金項(xiàng)目:
國家自然科學(xué)基金(61474120),國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(2014CB744600)
A -100 dB Power Supply Rejection Ratio Non-bandgap Voltage Reference
Funds:
The National Natural Science Foundation of China (61474120), The National Key Basic Research Program of China (2014CB744600)
-
摘要: 該文提出一種非帶隙基準(zhǔn)電路,通過一個(gè)帶超級源極跟隨器的預(yù)調(diào)制電路提供一個(gè)穩(wěn)定的電壓,為基準(zhǔn)核心電路供電。超級源極跟隨器通過降低基準(zhǔn)核心電路電源端的對地阻抗,有效提高了基準(zhǔn)電路的電源抑制能力。該基準(zhǔn)電路采用0.35 m CMOS 工藝設(shè)計(jì)并流片,測試結(jié)果表明,該電路的工作電源電壓為1.8~5 V,靜態(tài)電流約為13 A。低頻處電源抑制比(PSRR)約等于-100 dB,在小于1 kHz頻率范圍內(nèi)PSRR均優(yōu)于-93 dB。并且其片上面積僅為0.013 mm2。
-
關(guān)鍵詞:
- CMOS基準(zhǔn)電路 /
- 非帶隙基準(zhǔn)電路 /
- 預(yù)調(diào)制電路 /
- 超級源極跟隨器 /
- 電源抑制比
Abstract: This paper presents a non-bandgap voltage reference, which contains a pre-regulated circuit with a super source follower. The pre-regulated circuit includes a super source follower, which attenuates the impedance from the supply of the core reference circuit to ground. In this way, the pre-regulated circuit provides a relative stable voltage for the core reference circuit, improving the Power Supply Rejection Ratio (PSRR) of the output voltage of the reference. The proposed reference circuit is implemented in standard 0.35 m CMOS process. Measured results show that the supply range is from 1.8 to 5 V and the quiescent current is only about 13 A at room temperature. The PSRR at low frequency achieves -100 dB and the PSRR below 1 kHz is better than -93 dB. The active area of the proposed reference is only 0.013 mm2. -
GRAY P R, HURST P, MEYER R G, et al. Analysis and Design of Analog Integrated Circuits[M]. New Jersey, USA. Wiley, 1990: 201-300. ZHU Y, LIU F, YANG Y, et al. A -115 dB PSRR CMOS bandgap reference with a novel voltage self-regulating technique[C]. 2014 IEEE Proceedings of the Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 2014: 1-4. doi: 10.1109/CICC.2014.6946006. BASYURT P B and AKSIN D Y. A compact curvature corrected bandgap reference in 0.35m CMOS process[J]. Analog Integrated Circuits and Signal Processing, 2015, 83(1): 65-73. doi: 10.1007/s10470-015-0503-5. WANG B, LAW M K, and BERMAK A. A precision CMOS voltage reference exploiting silicon bandgap narrowing effect [J]. IEEE Transactions on Electron Devices, 2015, 62(7): 2128-2135. doi: 10.1109/TED.2015.2434495. CHAHARDORI M, ATARODI M, and SHARIFKHANI M. A sub 1V high PSRR CMOS bandgap voltage reference[J]. Microelectronics Journal, 2011, 42(9): 1057-1065. doi: 10.1016/j.mejo.2011.06.010. CAI C, SONG S X, LUO Y, et al. A high accuracy low-power bandgap voltage reference with trimming[C]. 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, China. 2014: 1-4. doi: 10.1109/ICSICT.2014.7021565. LAM Y H and KI W H. CMOS bandgap references with self- biased symmetrically matched currentvoltage mirror and extension of sub-1-V design[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010, 18(6): 857-865. doi: 10.1109/TVLSI.2009.2016204. COLOMBO D M, WIRTH G, and BAMPI S. Sub-1 V band-gap based and MOS threshold-voltage based voltage references in 0.13m CMOS[J]. Analog Integrated Circuits and Signal Processing, 2015, 82(1): 25-37. doi: 10.1007/ s10470-014-0343-8. LEUNG K N and MOK P K T. A CMOS voltage reference based on weighted VGS for CMOS low-dropout linear regulators[J]. IEEE Journal of Solid-State Circuits, 2003, 38(1): 146-150. doi: 10.1109/JSSC.2002.806265. CAJUEIRO J P C. Tracking-Vgs: a temperature compensation technique to implement all-MOS reference voltages[C]. Proceedings of the 6th International Caribbean Conference on Devices, Circuits and Systems, Playa del Carmen, Mxico, 2006: 287-291. doi: 10.1109/ICCDCS.2006.250875. CHANG S I, ALASHMOUNY K, and YOON E. A 1.5 V 120 nW CMOS programmable monolithic reference generator for wireless implantable system[C]. 2011 Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Boston, MA, USA, 2011: 2981-2984. doi: 10.1109/IEMBS.2011.6090818. ZHOU Z, ZHU P, SHI Y, et al. A resistorless CMOS voltage reference based on mutual compensation of VT and VTH[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(9): 582-586. doi: 10.1109/TCSII.2013. 2268639. CHOUHAN S S and HALONEN K. Design and implementation of a micro-power CMOS voltage reference circuit based on thermal compensation of Vgs[J]. Microelectronics Journal, 2015, 46(1): 36-42. doi: 10.1016/j.mejo.2014.09.015. CHOUHAN S S and HALONEN K. Design and implementation of all MOS micro-power voltage reference circuit[J]. Analog Integrated Circuits and Signal Processing, 2014, 80(3): 399-406. doi: 10.1007/s10470-014-0361-6. CHOUHAN S S and HALONEN K. A simple all MOS voltage reference for RFID applications[C]. 2013 IEEE NORCHIP Conference, Vilnius, Lithuania, 2013: 1-3. doi: 10.1109/NORCHIP.2013.6702027. ROH H D, ROH J, and DUAN D Q Z. All mos transistors bandgap reference using chopper stabilization technique[C]. 2010 International SoC Design Conference (ISOCC), Incheon, South Korea, 2010: 353-357. doi: 10.1109/SOCDC.2010. 5682897. TAN X L, CHONG S S, CHAN P K, et al. A LDO regulator with weighted current feedback technique for 0.47 nF-10 nF capacitive load[J]. IEEE Journal of Solid-State Circuits, 2014, 49(11): 2658-2672. doi: 10.1109/JSSC.2014.2346762. FILANOVSKY I M and ALLAM A. Mutual compensation of mobility and threshold voltage temperature effects with application in CMOS circuits[J]. IEEE Journal of Solid-State Circuits, 2001, 48(7): 876-884. doi: 10.1109/81.933328. -
計(jì)量
- 文章訪問數(shù): 2085
- HTML全文瀏覽量: 187
- PDF下載量: 587
- 被引次數(shù): 0